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1. Introduction. Technological Complex Networks 

Traditionally the analysis 
of the Internet structure is 
made by means of 
traceroutes. That is to say, 
by exploring all the paths 
from a given point to all 
the possible destinations. 
 
G. Caldarelli 
CNR-INFM Centre SMC Dep. Physics University 
“Sapienza” Rome, Italy 

 
 

Power grid network in the North 
America 



Complex Social Networks 

Friendship links in a school in the 
United States (from G. Caldarelli) 

Knowledge Networks: networks to 

capture the collective knowledge of the 
communities of users of online resources, 
such as the scientific literature and digital 
libraries, Wikipedia, as well as social media 
such as Twitter and Instagram. 



Complex Networks in Nature 

Complex structure of neuron links in 
the human brain  



Examples of structure formation in nature 
1. Fish shoals  

2. Bird swarm  

“Chaotic” swarm Structure formation 
around a sea lion 

Dynamical regular structure 

“Chaotic” swarm Structure formation process Ordered structure: wedge 



3. Pengiuns 

“Chaotic” crowd (mob) 

Stationary structure to protect the babies 



Chimera states in networks of nonlocally        
coupled identical oscillators 

Kuramoto phase oscillator model:   
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Exponential coupling function  

Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. in Complex Syst. 5, 380 (2002).  

Coherent domains of periodic in-phase oscillations coexist with incoherent domains, 
characterized by a chaotic behavior in time and in space.  

Snapshot of chimera state 



A chimera state was defined as a spatio-temporal pattern in which an array of 
identical oscillators is split into coexisting regions of coherent (phase and 
frequency locked) and incoherent (drifting) oscillations. 
 
 
 

“In Greek mythology, the chimera was a fire-
breathing monster having a lion’s head, a goat’s 
body, and a serpent’s tail. 
Today the word refers to anything composed of 
incongruent parts, or anything that seems 
fantastic.” 
 

Chimera of Arezzo 



Numerical observation of chimera states:  
Network of nonlocally coupled identical systems   
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𝑥𝑖 are real dynamic variables (𝑖 = 1, … , 𝑁, 𝑁 ≫ 1 and  

the index 𝑖 is periodic 𝑚𝑜𝑑 𝑁); 

𝑡 denotes time; 

𝜎 is the coupling strength; 

𝑃 specifies the number of neighbors in each direction  

coupled with the ith element; 

𝑟 is the  coupling radius (range), 𝑟 = 𝑃/𝑁; 

𝑓(𝑥) defines dynamics of individual element:  

 

• Stuart-Landau harmonic self-sustained oscillators; 

• discrete-time systems (maps);  

• continuous-time chaotic models; 

• FitzHugh-Nagumo neural systems; 

• Van der Pol oscillators; 

• quantum oscillator systems; 

• ….. 

P=1 

P=N/2 



 
1. Chimera states in a 1D periodic 
space (ring of phase oscillators).  

 
 

2. The incoherent region for a 
spiral chimera state on a 2D 
infinite space.  
 
Mark J. Panaggio and Daniel M. Abrams.   
Nonlinearity 28 (2015) R67-R87. 

3. 3D chimera states in a 
network of phase oscillators 
(incoherent  tube).  
Yu. Maistrenko et al. New Journal of 
Physics 17 (2015) 073037. 

Examples of chimera states 



Chimera in Nature:  
Unihemispheric  Sleep 



Regions of coherence for the system in the parameter 
plane (𝜎, 𝑟)  with wave numbers 𝑘 = 1, 2, and 3 . 
Snapshots of typical coherent states 𝑧𝑖  are shown in 
the insets. The color code inside the regions 
distinguishes  different  time periods of the states.  

Known results:  
Ring of coupled logistic maps  

Coherence-incoherence bifurcation for 
coupled chaotic logistic maps for fixed 
coupling radius r=0.32. Snapshots (left 
columns) and space-time plots (right 
columns) for different values of coupling 
strength are shown. 

Iryna Omelchenko, et al., 
Phys. Rev. Lett. 106 (2011)  234102 
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2. Role of Hyperbolicity in Realizing Chimera States in Networks 
of Chaotic Systems 



Results for the network of Henon maps 

 Regions of coherence for non-locally coupled 
Henon maps (1) in the (𝑟, 𝜎) parameter plane 
with wave numbers 𝑘 =  1, 2 and 3  (regions 
(𝒄), (𝒃) and 𝒂 , respectively). (𝒅) is the area of 
completely synchronized chaotic states, (𝒆) is 
the region of complete incoherent states. 
Chimera states are observed for  < 0.5. 
Parameters:  𝛼 = 1.4,   𝛽 = 0.3,   𝑁 = 1000. 

Coherence-incoherence bifurcation for 
coupled  Henon maps with fixed coupling 
radius 𝑟 =  0.3. For each value of the 
coupling parameter  (decreasing from 
top to bottom, 𝜎 = 0.53, 𝜎 = 0.45, 𝜎 =
0.32 and  𝜎 = 0.2 ), snapshots in time 
𝑡 = 5000 (left columns) and space-time 
plots (right columns) are shown.  N. Semenova, 2015.  



Iryna Omelchenko, et al.  Phys. Rev. E 85  (2012)  

Results for the network of Rössler systems 
 

Bifurcation diagram  

Coherence-incoherence bifurcation  



Lorenz system (with a quasi-hyperbolic attractor) 
 as a partial element of a network 

No chimera states!!! 
Volodymyr Dziubak, et al. //  

Phys. Rev. E, 2013,  87 



Hypothesis 

Chimera states can be obtained in rings of systems with period-doubling 
bifurcation (non-hyperbolic systems). The parameter planes (𝑟, 𝜎) of networks 
with such partial elements are topologically equivalent. 

The chimera state has not been found in a network of Lorenz systems. The 
Lorenz system is  quasi-hyperbolic.  

We propose the following hypothesis: 

 

Chimera states can be obtained only in networks of chaotic 
non-hyperbolic systems and cannot be found in networks of 
hyperbolic (quasi-hyperbolic) systems. 

 
As the basic models of these two main types, we consider the non-hyperbolic 
Henon map and the quasi-hyperbolic Lozi map. 

 



Basic models of chaotic systems                                         
as a partial element of a ring  

It has been shown that chimera states can be obtained only in networks of 
chaotic systems with non-hyperbolic attractors and cannot be found in 
networks of chaotic systems with hyperbolic (singular-hyperbolic) attractors.  
N. Semenova, A. Zakharova, E. Schöll, V. S. Anishchenko, Europhys. Lett. 112 (2015) 40002. 

 

         Discrete-time system                                               Discrete-time system  

with a non-hyperbolic attractor:                  with a singular-hyperbolic attractor: 

                 Henon map                                                                 Lozi map  

It describes the properties of chaotic 
attractors in the Poincare section for the 

spiral chaos systems: the Rössler oscillator, 
the Anishchenko-Astakhov oscillator etc.  

It represents the properties of the 
Lorenz-type attractors in the Poincare 

section. 



The Henon map as a partial element of a network  

The Henon map can be used to describe qualitatively the bifurcational phenomena in 
three-dimensional time-continuous systems which demonstrate a spiral-chaos regime 
due to the existence of a saddle-focus separatrix loop. It has been shown that in this 
case, the Poincare section of a three-dimensional time-continuous system gives a two-
dimensional map of type (1). The Henon map (1) is an example of a non-hyperbolic 
dynamical system with the bifurcation of homoclinic tangency of stable and unstable 
manifolds of a saddle point. The Henon map is the simplest model of the maps which 
can be obtained in the Poincare section of spiral-type chaotic attractors. 

𝑥𝑛+1 = 1 − 𝛼𝑥𝑛
2 + 𝑦𝑛

𝑦𝑛+1 = 𝛽𝑥𝑛                  
      (1) 



Example: Three-dimensional chaotic system – the Anishchenko-Astakhov oscillator  
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Saddle-focus separatrix loop   Chaotic attractor for      
m =1.5 and g=0.2  

The map for the chaotic 
attractor in the secant 

plane x=0 

V.S. Anishchenko, 1987 – 1990. 



Results for non-hyperbolic partial elements 

Henon 

maps 

Logistic map, cubic map, Rössler 
system, Anishchenko-Astakhov 
oscillator 



The Lozi map is a quasi-hyperbolic system. It is a general discrete model of Lorenz-
type chaotic attractors in the Poincaré section.  
 
If our hypothesis is true, then the results for the network of Henon maps  must be 
similar to those for the rings of logistic maps,  cubic maps, and  Rössler systems. For 
the network of  Lozi maps, the observations must be similar to the network of  Lorenz 
systems. 

The Lozi map as a partial element of a network 

𝑥𝑛+1 = 1 − 𝛼 𝑥𝑛 + 𝑦𝑛
𝑦𝑛+1 = 𝛽𝑥𝑛                     

      (2) 



Results for the ring of Lozi maps 

The structure of the parameter plane (𝑟, 𝜎) for the ring of non-locally 
coupled Lozi maps.  

 
The parameters are  𝛼 = 1.4,   𝛽 = 0.3,   𝑁 = 1000. 

Complete 
chaotic 

synchronization 

Spatial 
incoherence 

Standing or 
travelling waves 



Appearance of a single solitary state in the ring of Lozi maps 



 = 0.226   

 = 0.219 

Transition to incoherence through solitary states in the network of Lozi maps 
for r = 0.193  

 = 0.193 

 = 0.165 



Number of solitary states versus the coupling coefficient 
 for different initial conditions  

The law is approximately linear! 



Travelling waves in the networks of  Lozi maps 
and Lorenz systems  

Ring of Lozi maps  Ring of Lorenz systems  



Results for hyperbolic (quasi-hyperbolic) 
partial elements 

Lozi 

maps 

Lorenz-type systems 



    Lorenz attractor          Nonhyperbolic attractor in the Lorenz system 

Bifurcation diagram of the Lorenz system (3) 
on the (𝜌, 𝛾) parameter plane for 𝑏 = 8/3. 
The transition from the Lorenz attractor to a 
non-hyperbolic attractor is observed when 
one intersects the line 𝑙3. 

𝑥 = −𝛾 𝑥 − 𝑦 ,    
𝑦 = −𝑥𝑧 + 𝜌𝑥 − 𝑦,
𝑧 = −𝑏𝑧 + 𝑥𝑦.      

        (3) 

 = 28 

 = 35 

Map of the quasi-hyperbolic and 
non-hyperbolic Lorenz attractors 
in the secant plane z = const  

V.V. Bykov, A.L. Shilnikov,  About the boundaries of the Lorenz attractor existence. In: Methods of the 
Qualitative Theory and Bifurcation Theory. Gorky, 1989. P. 151-159 (in Russian).  



Chimera states in a ring of non-
locally coupled Lorenz systems 

(non-hyperbolic case) 

Chimera states in the ring of 𝑁 =  300  non-locally 
coupled Lorenz systems (3). Snapshots in the time 
𝑡 =  5000  (left column) and space-time plots (right 
column) are shown. The parameters are 𝑏 = 8/3, 𝛾 =
10, 𝝆 = 𝟐𝟐𝟎,  𝑟 =  0.22 . Decreasing from top to 
bottom,  𝜎 = 0.4 ÷ 0.1.  
 
(a) - complete synchronization, (b-e) - chimera states, 
(f),(g) - spatial incoherence. 

𝝈𝒙 = 𝝈𝒚 = 𝝈;  

𝝈𝒛 = 𝟎 



  

Logistic 
map 

Henon 
map 

Rössler 
oscillator 

The bifurcation diagrams show the 
topological equivalence.  

 
Thus, for simplicity,  we consider the 
dynamics of the ring of non-locally 

coupled logistic maps.      

3. Transition from coherence to 
incoherence in a network of 
nonlocally coupled logistic 
maps  



System under study 

(1) 

 - coupling function  

• xi  are  real  dynamic variables  (𝑖 = 1,…,𝑁,  𝑁 = 1000,  and the index 𝑖 is periodic 
𝑚𝑜𝑑 𝑁); 

• 𝑡 denotes the discrete time; 
• 𝜎 is the coupling strength; 
• 𝑃 specifies  the number of neighbors on the left and right of  the ith element; 

• f(x) is the logistic map with a = 3.8:  
 
 

• 𝑟 is the  coupling radius, 𝑟 = 𝑃/𝑁,  𝑟 = 0.32.  

• The initial conditions  xi
0  are chosen  to be randomly distributed in the interval 

0 < xi
0 < 1.  

 



Fragment of the bifurcation diagram  
for the ring of logistic maps 

We fix a = 3.8, r = 0.32 and set random initial conditions.  
 changes along the lines with arrows shown in the diagram.       



The aim of the research is  
 
• to study numerically the transition from complete chaotic synchronization to 

spatiotemporal chaos in the ring of non-locally coupled logistic maps when the 
coupling strength is varied (0 <  < 1).  

We plot snapshots of the system dynamics (a spatial distribution of the 
instantaneous values of dynamical variables xi ) and  space-time profiles (the last 
100 iterations of the dynamical variables for each network element).  
  
• to analyze the spatial correlation in the ensemble by using the cross-

correlation coefficient (CCC) of the oscillations of different elements.  
We consider the first and the ith elements at the same time and the CCC is 
defined as follows: 
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i  is a fluctuation around the average 
value. The brackets mean time 
averaging.  

i = 2, 3, …, N 



Phase-parametric diagram for the ring of logistic maps  

A – spatio-temporal chaos in the ensemble;  
B, C, E, and G – periodic regimes;  
F – quasiperiodic oscillations; 
D – region of chimera states; 
H – partial spatio-temporal chaotic  synchronization; 
 I – complete spatio-temporal chaotic synchronization (* is the blowout bifurcation point). 
  

i = 500 

r = 0.32 

 



Transition from complete chaotic synchronization 
to partial synchronization regime (I  H) 

Region I – complete chaotic synchronization  

Snapshot Space-time  
profile 

Although the oscillations in the elements are chaotic, the instantaneous values of all the 
variables xi coincide at any time, the CCC 1,i is strongly equal to 1, and  the points of the 

chaotic trajectory is located in the symmetric subspace  for all  i = 1,2, 3, …, 1000. 

  

1,i 

Cross- 
correlation 

xi 

Phase 
trajectory 
projection 



Regime of oscillating  or partial chaotic synchronization (region H):   0.5 < < 0.63  

Snapshot 

Cross-correlation  

1,i 
x500 

x1 

The wave-like profile oscillates randomly without losing its smoothness but the degree of 
cross-correlation decreases as i increases, and the phase trajectories no longer lie in the 

symmetric subspace.   

Space-time profile 

i 

xi 

This regime is coherent according to the condition: 
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Phase trajectory projection 

 = 0.55 



Space-time  
profiles for the 

coupling  
function  

 = 0.43 
  2-cycle 

 = 0.38 
  4-cycle 

 = 0.3574 
    8-cycle 

 = 0.35 
   chaos  
   origin 

Snapshots of 
the network 

dynamics 

Transition to 
chimera regime 

(E  D) 

0.25 < < 0.35  



Phase chimera state 

Elements in regions 1 and 2 demonstrate weakly chaotic oscillations which are close 
to the 2-cycle and shifted in phase by  one iteration.  
Phase chimera state: random switchings between the in-phase (region 1) and anti-
phase (region 2) oscillations.  



Phase shift along the ring  

((b) 

(a) 

Snapshot (a) and space-time 
profile (b) for  = 0.43 (2-periodic 

oscillation regime in the ring 
elements)  

i=298 

Time series for  
i =48  

 

i =297 (1) 
i =298 (2) 
i =299 (3) 

 

(1) 

(2) 

(3) 

Phase is shifted 
when passing  from 

i =297 to i =299  



Cross-correlation  in the phase chimera regime    

The CCC in the regime of phase 
chimera changes between either +1  or 

-1 and  characterizes random 
switchings between the in-phase (+1) 

and anti-phase (-1) oscillations.  

 = 0.29 1 

2 

1,i 

i 



Amplitude chimera state (region D):  0.25 < < 0.29  

  

Snapshot 

 = 0.28 

Space-time profile  

Amplitude 
chimera 

Amplitude chimera state appears when 
the cluster of elements (120 < i < 290)  

demonstrates developed chaotic 
behavior.  

Cross-correlation  



Amplitude chimera in the ensemble 
of Anishchenko-Astakhov oscillators 

m = 1.49, g = 0.2, r =0.25, N = 100. 

Amplitude chimera birth. 
Snapshots  xi (left column) and space-
time profiles (right column) for yi in the 
Poincare section (xi = 0) for decreasing 
coupling strength.   

 = 
0.08 

0.07 

0.059 

0.04 

S.A. Bogomolov, A.V. Slepnev, G.I. Strelkova, E. 
Schöll, and V.S. Anishchenko. Commun. 
Nonlinear Sci. Numer. Simulat. 43, 25-36 (2017) 



Transition to spatio-temporal chaos 
(region A)  

  < 0.13 

The individual oscillators behave chaotically in time and are 
completely desynchronized. The spatial behavior is fully 
irregular (incoherent).  
When decreasing coupling strength the chaotic dynamics 
develops as a result of merging bifurcations.  

2-band chaotic set ( =0.1 ) 
The phase trajectory switches 
between the parts regularly in 
time and the CCC oscillates at 
the level ±0.87.  
 
 
 
Single-band (developed) 
chaotic set ( = 0.05) 
The CCC almost vanishes.  

Snapshot Cross-correlation 



Temporally intermittent chimera structure 

Cross-correlation  

Snapshot 

Amplitude-phase chimera intermittency for     
r = 0.08,   = 0.25  

The intermittency process is random in time.  

Phase chimera Amplitude chimera 

T.E. Vadivasova,  G.I. Strelkova, S.A. Bogomolov, and V.S. 
Anishchenko. CHAOS, 26 (2016).  



4. Global transition “coherence-incoherence” 

System equation 

can be rewritten as follows:  

with 

Two limit cases for : 
1.   1:  the first term in (2) vanishes. The 

second term describes synchronous 
chaotic oscillations of the network (region 
1).  

2.   0: the second term in (2) vanishes. 
The system demonstrates spatio-temporal 
chaotic regime (region 3).  

(2) 

When 0 <  < 1 (in our simulation 0.2 <  < 0.43), phase, amplitude and 
amplitude-phase chimera states are realized.     



Conclusion 

• We have shown that the chimera states can be obtained only in  networks of 
chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic 
(quasi-hyperbolic) systems.  

• The appearance and existence of chimera states in a ring of non-locally coupled 
chaotic oscillators can be described by using two basic models, namely, the Henon 
map and the Lozi map as partial elements.  

• The global transition “coherence – incoherence” has been explored in detail in the 
ring of non-locally coupled logistic maps operating in the chaotic regime.  

• The peculiarities of stability loss of complete chaotic synchronization and transition 
to the regime of partial chaotic synchronization have been established.  

• Conditions for the appearance of phase and amplitude chimera states have been 
studied. 

•  The effect of time intermittency between the phase and amplitude chimeras has 
been revealed.  

• Cross-correlations have been analyzed for all types of chimera states.  
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