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1. Introduction. Technological Complex Networks

Traditionally the analysis
of the Internet structure is
made by means of
traceroutes. That is to say,
by exploring all the paths
from a given point to all
the possible destinations.

G. Caldarelli
CNR-INFM Centre SMC Dep. Physics University
“Sapienza” Rome, Italy

Power grid network in the North
America




Complex Social Networks

Friendship links in a school in the
United States (from G. Caldarelli)

Knowledge Networks: networks to
capture the collective knowledge of the
communities of users of online resources,
such as the scientific literature and digital
libraries, Wikipedia, as well as social media
such as Twitter and Instagram.
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Complex Networks in Nature

Figure 1. Agent based brain model. Each of 90 gray matter brain
Complex structure of neuron links in regions is represented by a node. Lines indicate functional

connections, defined by correlated functional activity measured
using fMRI. Nodes may either be on (green) or off (yellow) and
connections indicate positive (red) or negative (black) correlations.

the human brain



Examples of structure formation in nature
sh shoals

1. F

“Chaotic” swarm Structure formation
around a sea lion

Dynamical regular structure

2. Bird swarm

“Chaotic” swarm Structure formation process Ordered structure: wedge
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Chimera states in networks of nonlocally
coupled identical oscillators

Kuramoto phase oscillator model:

Y o [l x)sinfp () w0+ aky with Gy, (X) = —e™N
ct g \ ' 2 ;
Exponential coupling function
Snapshot of chimera state
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Coherent domains of periodic in-phase oscillations coexist with incoherent domains,
characterized by a chaotic behavior in time and in space.

Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. in Complex Syst. 5, 380 (2002).
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Chimera States for Coupled Oscillators

Daniel M. Abrams™ and Steven H. Strogatz’
Department of Theoretical and Applied Mechanics, Cornell University, 212 Kimball Hall, Ithaca, New York 14853-1503, USA

A chimera state was defined as a spatio-temporal pattern in which an array of
identical oscillators is split into coexisting regions of coherent (phase and
frequency locked) and incoherent (drifting) oscillations.

“In Greek mythology, the chimera was a fire-
breathing monster having a lion’s head, a goat’s
body, and a serpent’s tail.

Today the word refers to anything composed of
incongruent parts, or anything that seems
fantastic.”

Chimera of Arezzo



Numerical observation of chimera states:
Network of nonlocally coupled identical systems

R

i+P

% (t) = f(xi(t))+% PN LCHO B ICTO)

j=i—P

x; are real dynamic variables (i = 1, ..., N,N > 1 and
the index i is periodic mod N);

t denotes time;

o is the coupling strength;

P specifies the number of neighbors in each direction
coupled with the ith element;

r is the coupling radius (range), r = P/N;

f (x) defines dynamics of individual element:

« Stuart-Landau harmonic self-sustained oscillators;
 discrete-time systems (maps); A\
« continuous-time chaotic models; I
» FitzHugh-Nagumo neural systems; nge:
« Van der Pol oscillators; \DRL RS
 guantum oscillator systems; N




Examples of chimera states
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1. Chimera states in a 1D periodic
space (ring of phase oscillators). ‘

0 X (space) 1

2. The incoherent region for a
spiral chimera state on a 2D

infinite space. ‘

Mark J. Panaggio and Daniel M. Abrams.
Nonlinearity 28 (2015) R67-R87.

3. 3D chimera states in a
network of phase oscillators ‘

(incoherent tube).

Yu. Maistrenko et al. New Journal of
Physics 17 (2015) 073037.




Chimera in Nature:
Unihemispheric Sleep

N.C. Rattenborg et al. / Neuroscience and Biobehavioral Reviews 24 (2000) 817842
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Fig. 1. EEG recorded from the parieto-occipital cortex (A) of a bottlenose dolphin during unihemispheric slow-wave sleep with either the left (B) or right (C)
hemisphere asleep. Note the high-amplitude, low-frequency EEG activity in the sleeping hemisphere and the low-amplitude, high-frequency EEG activity in
the awake hemisphere. Reprinted from Brain Research, Vol 134, Mukhametov, L M., Supin, A Y, Polyakova, L.G., Interhemispheric asymmetry of the
electroencephalographic sleep patterns in dolphins, 581-584, 1977, with permission from Elsevier Science.



2. Role of Hyperbolicity in Realizing Chimera States in Networks
of Chaotic Systems

Known results:
Ring of coupled logisticmaps Z,,; = lZn (1— Zn)
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Regions of coherence for the system in the parameter
plane (o,r) with wave numbers k =1,2,and 3.
Snapshots of typical coherent states z; are shown in
the insets. The color code inside the regions
distinguishes different time periods of the states.

Iryna Omelchenko, et al.,
Phys. Rev. Lett. 106 (2011) 234102
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Coherence-incoherence  bifurcation  for
coupled chaotic logistic maps for fixed
coupling radius r=0.32. Snapshots (left
columns) and space-time plots (right
columns) for different values of coupling
strength are shown.




Results for the network of Henon maps
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Regions of coherence for non-locally coupled
Henon maps (1) in the (r,0) parameter plane
with wave numbers k = 1,2 and 3 (regions
(c), (b) and (a), respectively). (d) is the area of
completely synchronized chaotic states, (e) is
the region of complete incoherent states.
Chimera states are observed for o < 0.5.
Parameters: «a = 1.4, f =0.3, N =1000.

N. Semenova, 2015.

0=0.53 r=0.3

w00
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i

Coherence-incoherence bifurcation for
coupled Henon maps with fixed coupling
radius r = 0.3. For each value of the
coupling parameter (decreasing from
top to bottom, 0 = 0.53, 0 = 0.45, 0 =
0.32and o = 0.2), snapshots in time
t = 5000 (left columns) and space-time
plots (right columns) are shown.



Results for the network of Rossler systems

i+P
_ o
Y =—vi—i+t55 Z (x; —xi),

j=i—P

Coherence-incoherence bifurcation
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Bifurcation diagram

Iryna Omelchenko, et al. Phys. Rev. E 85 (2012)



Lorenz system (with a quasi-hyperbolic attractor)
as a partial element of a network
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Hypothesis

Chimera states can be obtained in rings of systems with period-doubling
bifurcation (non-hyperbolic systems). The parameter planes (7, g) of networks
with such partial elements are topologically equivalent.

The chimera state has not been found in a network of Lorenz systems. The
Lorenz system is quasi-hyperbolic.

We propose the following hypothesis:

Chimera states can be obtained only in networks of chaotic
non-hyperbolic systems and cannot be found in networks of
hyperbolic (quasi-hyperbolic) systems.

As the basic models of these two main types, we consider the non-hyperbolic
Henon map and the quasi-hyperbolic Lozi map.



Basic models of chaotic systems
as a partial element of a ring

It has been shown that chimera states can be obtained only in networks of
chaotic systems with non-hyperbolic attractors and cannot be found in

networks of chaotic systems with hyperbolic (singular-hyperbolic) attractors.
N. Semenova, A. Zakharova, E. Scholl, V. S. Anishchenko, Europhys. Lett. 112 (2015) 40002.

Discrete-time system Discrete-time system
with a non-hyperbolic attractor: with a singular-hyperbolic attractor:
Henon map Lozi map
Xpe1 = 1 —axi +y, Xnt1 = 1—alx,| +y,
VYn+1 = BXn Vn+1 = BXn
It describes the properties of chaotic It represents the properties of the
attractors in the Poincare section for the Lorenz-type attractors in the Poincare
spiral chaos systems: the Rossler oscillator, section.

the Anishchenko-Astakhov oscillator etc.



The Henon map as a partial element of a network

Xn+1 = 1- ax‘lzl + Yn (1)

Yn+1 = Pxn
The Henon map can be used to describe qualitatively the bifurcational phenomena in
three-dimensional time-continuous systems which demonstrate a spiral-chaos regime
due to the existence of a saddle-focus separatrix loop. It has been shown that in this
case, the Poincare section of a three-dimensional time-continuous system gives a two-
dimensional map of type (1). The Henon map (1) is an example of a non-hyperbolic
dynamical system with the bifurcation of homoclinic tangency of stable and unstable
manifolds of a saddle point. The Henon map is the simplest model of the maps which
can be obtained in the Poincare section of spiral-type chaotic attractors.

1 /I A Y T T T ThE
T 2

-0.5




Example: Three-dimensional chaotic system — the Anishchenko-Astakhov oscillator

X=mMxX+Yy— Xz,

y=—X+7,
2 =-0gz+ gF(x)x°.

0 1 2 3 g
¥n
Saddle-focus separatrix loop Chaotic attractor for The map for the chaotic
m =1.5 and g=0.2 attractor in the secant
plane x=0

V.S. Anishchenko, 1987 — 1990.



Results for non-hyperbolic partial elements
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Logistic map, cubic map, Rossler
system, Anishchenko-Astakhov
oscillator

Chimera states




The Lozi map as a partial element of a network

Xn+1 = 1 — alxnl + Yn
2
Yn+1 = BXn ( )

The Lozi map is a quasi-hyperbolic system. It is a general discrete model of Lorenz-
type chaotic attractors in the Poincaré section.

If our hypothesis is true, then the results for the network of Henon maps must be
similar to those for the rings of logistic maps, cubic maps, and Rdssler systems. For
the network of Lozi maps, the observations must be similar to the network of Lorenz
systems.
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Results for the ring of Lozi maps

Complete
chaotic
synchronization

Standing or
travelling waves

o)

The structure of the parameter plane (r, o) for the ring of non-locally
coupled Lozi maps.

The parametersare a = 1.4, =03, N = 1000.



Appearance of a single solitary state in the ring of Lozi maps

0=0.226 r=0.300

].2 ' I I I I

0.8 -
0.6 -
04 -

0.2
0.4 | -

-06 _

0 200 400 600 800 1000



Transition to incoherence through solitary states in the network of Lozi maps
forr=0.193
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N /N

Number of solitary states versus the coupling coefficient
for different initial conditions
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Travelling waves in the networks of Lozi maps
and Lorenz systems

o=0.8 r=0.06 Lorenz 6=20 r=0.12
50000 — g 140
45000 135
40000 / : 130
35000 125
t1ime30000 timel20
25000 115
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Ring of Lozi maps Ring of Lorenz systems



Results for hyperbolic (quasi-hyperbolic)
partial elements

OO?O O x Chimera states

Lorenz-type systems




Lorenz attractor —> Nonhyperbolic attractor in the Lorenz system

x=-y(x—y)
y=-xz+px—y, (3
Z = —bz + xy.
7
20
Nonhyperbolic
attractor
Lorenz
attractor
104
0 | 1 1
10 20 30 40 P

Bifurcation diagram of the Lorenz system (3)
on the (p,y) parameter plane for b = 8/3.
The transition from the Lorenz attractor to a
non-hyperbolic attractor is observed when
one intersects the line [5.
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V.V. Bykov, A.L. Shilnikov, About the boundaries of the Lorenz attractor existence. In: Methods of the
Qualitative Theory and Bifurcation Theory. Gorky, 1989. P. 151-159 (in Russian).
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Chimera states in a ring of non-
locally coupled Lorenz systems
(non-hyperbolic case)

i+P
. O- —
X = ¢y —xi) + ﬁ Z (Xj = Xi), Ox = 0y = 0;
j=i—P o,=0
o i+P
:
Vi=xi(p—2z)—yi + ﬁ Z (yj Vi),
Jj=i—P
o i+P
i = xiyi — Bz + 5P j;P(Zj — i),

Chimera states in the ring of N = 300 non-locally
coupled Lorenz systems (3). Snapshots in the time
t = 5000 (left column) and space-time plots (right
column) are shown. The parameters are b =8/3, y =
10, p =220, r = 0.22 . Decreasing from top to
bottom, 0 = 0.4 = 0.1.

(a) - complete synchronization, (b-e) - chimera states,
(f),(g) - spatial incoherence.



3. Transition from coherence to
incoherence in a network of
nonlocally coupled logistic
maps

The bifurcation diagrams show the
topological equivalence.

Thus, for simplicity, we consider the
dynamics of the ring of non-locally
coupled logistic maps.

Logistic
map

Henon
map

Rossler
oscillator



System under study
o 1+P
v = f(25) + 55 Sf@h) = f(ay)] 1)

2P =, )

f

F (o, 1, x;)- coupling function

X; are real dynamic variables (i =1,...,N, N =1000, and the index i is periodic
mod N);

t denotes the discrete time;

o is the coupling strength;

P specifies the number of neighbors on the left and right of the ith element;

f(x) is the logistic map with a = 3.8:
f(z;) = ax;(1 — ;)
ris the coupling radius, r = P/N, r =0.32.

The initial conditions X, are chosen to be randomly distributed in the interval
0<x’<1l



Fragment of the bifurcation diagram
for the ring of logistic maps

We fixa = 3.8, r = 0.32 and set random initial conditions.
o changes along the lines with arrows shown in the diagram.



The aim of the research is

* to study numerically the transition from complete chaotic synchronization to
spatiotemporal chaos in the ring of non-locally coupled logistic maps when the
coupling strength is varied (0 < o < 1).

We plot snapshots of the system dynamics (a spatial distribution of the

instantaneous values of dynamical variables x; ) and space-time profiles (the last

100 iterations of the dynamical variables for each network element).

 to analyze the spatial correlation in the ensemble by using the cross-
correlation coefficient (CCC) of the oscillations of different elements.

We consider the first and the ith elements at the same time and the CCC is

defined as follows:

(X, ()X (1))

.= , X(1) = x(t) - <x(z‘)> is a fluctuation around the average

\/<)~('12 (t)><)?i2 (t)> value. The brackets mean time
averaging.

1=2,3,...,N



Phase-parametric diagram for the ring of logistic maps
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A — spatio-temporal chaos in the ensemble;

B, C, E, and G — periodic regimes;

F — quasiperiodic oscillations;

D —region of chimera states;

H — partial spatio-temporal chaotic synchronization;

| — complete spatio-temporal chaotic synchronization (c” is the blowout bifurcation point).




Transition from complete chaotic synchronization
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Although the oscillations in the elements are chaotic, the instantaneous values of all the
variables X; coincide at any time, the CCC ¥ ;is strongly equal to 1, and the points of the
chaotic trajectory is located in the symmetric subspace forall 1=1,2, 3, ..., 1000.



Regime of oscillating or partial chaotic synchronization (region H): 0.5 <5< 0.63

Space-time profile
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The wave-like profile oscillates randomly without losing its smoothness but the degree of

cross-correlation decreases as I increases, and the phase trajectories no longer lie in the
symmetric subspace.
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Phase chimera state
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Snapshot (a) of the dynamics of the coupled logistic maps (1) and time series of
the coupling function F(z;) for the 318th element (solid green line) and the 319th element
(dotted red line) of the ring (b). The coupling strength is chosen as ¢ = 0.27.

Elements in regions 1 and 2 demonstrate weakly chaotic oscillations which are close
to the 2-cycle and shifted in phase by one iteration.

Phase chimera state: random switchings between the in-phase (region 1) and anti-
phase (region 2) oscillations.



Phase shift along the ring
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Cross-correlation in the phase chimera regime

The CCC in the regime of phase
chimera changes between either +1 or
-1 and characterizes random
switchings between the in-phase (+1)
and anti-phase (-1) oscillations.
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Amplitude chimera state (region D): 0.25<5<0.29
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Amplitude chimera state appears when
the cluster of elements (120 <1 < 290)
demonstrates developed chaotic
behavior.



Amplitude chimera in the ensemble
of Anishchenko-Astakhov oscillators

dx; i+P
d; = mx;+ Yy —xizi + QP Z z')-,
j=i—P
dyz' n o itP ( )
- Tt op Yi — Yi),
dt 2P Yi — Yi),
j=i—P
1z; I
% = g|®(x;) — 2|, ®(x;)= % (z; + |zi]) .

m=1.49,g=0.2, r=0.25, N = 100.

S.A. Bogomolov, A.V. Slepnev, G.I. Strelkova, E.
Scholl, and V.S. Anishchenko. Commun.
Nonlinear Sci. Numer. Simulat. 43, 25-36 (2017)
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The individual oscillators behave chaotically in time and are

Transition to spatio-temporal chaos
(region A)
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completely desynchronized. The spatial behavior is fully
irregular (incoherent).
When decreasing coupling strength the chaotic dynamics
develops as a result of merging bifurcations.
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2-band chaotic set (5 =0.1)
The phase trajectory switches
between the parts regularly in
time and the CCC oscillates at
the level £0.87.

Single-band (developed)
chaotic set (c = 0.05)
The CCC almost vanishes.




Temporally intermittent chimera structure
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The intermittency process is random in time.

T.E. Vadivasova, G.I. Strelkova, S.A. Bogomolov, and V.S.
Anishchenko. CHAQS, 26 (2016).



4. Global transition “coherence-incoherence”

i+F
T
System equation = " = f(x}) + 5P [f(:tj) — f(z))] with f(z:) = azi(1 — x,)
j=i—P
can be rewritten as follows:
- it+P
t+1 t t t ¢
7 =a(l —o)z; (1 —x;) + 5P ax;(1 — ;) (2)
j=i—P, j#i

Two limit cases for c: '
1. o — 1. the first term in (2) vanishes. The os |
second term describes synchronous

chaotic oscillations of the network (region ¢

\\\\\\\\\\\

S
N

Q

1). 04 F

2. o — 0: the second term in (2) vanishes. 02 | /\
The system demonstrates spatio-temporal . ,
chaotic regime (region 3). [

When 0 < 6 < 1 (in our simulation 0.2 < 6 < 0.43), phase, amplitude and
amplitude-phase chimera states are realized.



Conclusion

We have shown that the chimera states can be obtained only in networks of
chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic
(quasi-hyperbolic) systems.

The appearance and existence of chimera states in a ring of non-locally coupled
chaotic oscillators can be described by using two basic models, namely, the Henon
map and the Lozi map as partial elements.

The global transition “coherence — incoherence” has been explored in detail in the
ring of non-locally coupled logistic maps operating in the chaotic regime.

The peculiarities of stability loss of complete chaotic synchronization and transition
to the regime of partial chaotic synchronization have been established.

Conditions for the appearance of phase and amplitude chimera states have been
studied.

The effect of time intermittency between the phase and amplitude chimeras has
been revealed.

Cross-correlations have been analyzed for all types of chimera states.
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