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Outlook	

•  Physical picture of Quark-Gluon Plasma  in heavy-ion collisions 

•  Why holography? 
 
•  Results from holography: 

           Fit  experimental data via holography:  
 

                                                  top-down (top=string theory) 
                         bottom-up (bottom=5-dim GR+matter) 
 

                      Transport	coefficients,	eta/s,	thermaliza4on	4me,	mul4plicity,…. 
	
                                          
            Predict new data (form of QCD	Phase	Diagram) 
 
•  What is special for NICA  (Nuclotron-based	Ion	Collider	fAcility) 
 
	



  

The Quark-Gluon Plasma formed in Nuclear 
Collisions at very high Energy

 
 

Picture from: P.Sorensen, C.Shen 

Heavy-Ion	Collisions	



Experiments:	Heavy	Ions	collisions	produced	a	medium	

There	are	strong	experimental	evidences	that		RHIC	
or	LHC	have	created	some	medium	which	behaves	
collec;vely:	

	

•  modifica;on	of	par;cle	spectra	(compared	to	p+p)	
•  jet	quenching		
•  high	p_T-suppression	of	hadrons	
•  ellip;c	flow	
•  suppression	of	quarkonium		produc;on	
											



From	observa4ons	in		HIC	
	

•  QGP	strong	interac4ng	fluid	
•  Measurement	of	energy	lost	(jet	quenching,	RAA-
factor,	J/Psi	suppressions	

•  Transport	coefficients,	extremely	small	eta/s	
•  Phase	transi4on	(s4ll	near	small	mu)	
•  Energy	dependence	of	the	total	mul4plicity	s0.155		
•  Thermaliza4on	4me	
•  Direct	photons	(electric	conduc4vity)	



Centrality dependence of hdNch/dhi in Pb–Pb at
p

sNN = 5.02 TeV ALICE Collaboration
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Fig. 1: Values of 2
hNparti hdNch/dhi for central Pb–Pb [4–7] and Au–Au [8–12] collisions (see text) as a function

of
p

sNN. Measurements for inelastic pp collisions and pp collisions as a function of
p

s are also shown [26–28]
along with those from non-single diffractive p–A and d–A collisions [29, 30]. The s-dependence, proportional
to s0.155

NN for AA collisions is indicated by a solid line: similarly a dashed line shows an s0.103
NN dependence in pp

collisions. The shaded bands show the uncertainties on the extracted power-law dependencies. The central Pb–Pb
measurements from CMS and ATLAS at 2.76 TeV have been shifted horizontally for clarity.

b = 0.155±0.004. It is a much stronger s-dependence than for proton–proton collisions, where a value
of b = 0.103± 0.002 is obtained from a fit to the same function [28]. The fit results are plotted with
their uncertainties shown as shaded bands. The result at

p
sNN = 5.02 TeV confirms the trend established

by lower energy data since b is not significantly different when the new point is excluded from the fit.
It can also be seen in the figure that the values of 2

hNparti hdNch/dhi measured by ALICE for p–Pb [25]
and PHOBOS for d–Au [11] collisions fall on the curve for proton–proton collisions, indicating that the
strong rise in AA is not solely related to the multiple collisions undergone by the participants since the
proton in p–A collisions also encounters multiple nucleons.

The centrality dependence of 2
hNparti hdNch/dhi is shown in Figure 2. The point-to-point centrality-

dependent uncertaintes are indicated by error bars whereas the shaded bands show the correlated con-
tributions. The statistical uncertainties are negligible. The data are plotted as a function of hNparti and
a strong dependence is observed, with 2

hNparti hdNch/dhi decreasing by a factor 1.8 from the most central
collisions, large hNparti, to the most peripheral, small hNparti. There appears to be a smooth trend towards
the value measured in minimum bias p–Pb collisions [25]. The data measured at

p
sNN = 2.76 TeV

[4, 26] are also shown, scaled by a factor 1.2, which is calculated from the observed s0.155 dependence of
the results in the most central collisions, and which describes well the increase for all centralities. Given
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Mul;plicity			

MLHC ⇠ s0.155



EPJ Web of Conferences

calculation [7] strongly supports the idea to use holography to study physics of QGP formed in HIC
[].

In Fig.1.B the QCD phase diagram is presented. The phase diagram of QCD is not well known
either experimentally or theoretically. A commonly conjectured form of the phase diagram, temper-
ature T vs quark chemical potential µ, is shown in Fig.1.B. The chemical potential µ is a measure of
the imbalance between quarks and antiquarks in the system. The phase transition is not sharp and it
is supposed to be the 1-st order.

Ordinary nuclear matter in this diagram is at µ = 310 MeV and T close to zero. If we increase
the quark density, i.e. increase µ, keeping the temperature low, we go into a phase of more and more
compressed nuclear such as matter neutron stars. Above the (blue on the on-line version of the paper)
smeared line there is a transition to the quark-gluon plasma. At ultra-high densities one expects to find
the phase of color-superconducting quark matter. In ultra-relativistic heavy ion collisions one studies
this matter in the regime of extreme energy density. In Fig.1.B. the typical values of µ and T in heavy-
ion collisions (RHIC and LHC) are shown by a filled (cyan) region near the T-axis. The regions
expected to be available at NICA (Nuclotron-based Ion Collider fAcility) [9] and FAIR (Facility for
Antiproton and Ion Research) are indicated by arrows.
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Figure 1. A. The trace anomaly, energy density and pressure for two flavors of twisted mass Wilson fermions at
m⇡ = 360 MeV. The plot from [10]. B.The QCD phase diagram

The exact dual description of the real QCD is unknown, but holographic QCD models that fit
perturbative (two loops �-function) and lattice QCD results (in particular, the quark confinement po-
tential) have been proposed [11, 12]. Using these models several static properties of QGP have been
reproduced [8].

The description of the QGP formation in HIC is a di�cult subject, since it supposes to study a
complicated real time phenomena – thermalization. We also do not know much from experiments
about the details of the QGP formation in HIC, one can just estimates the time of QGP formation as
well as the total multiplicity (there are arguments that the main part of particles is produced during
the QGP formation) [13, 14]. The QGP formation has been the subject of the active studies within
holographic approach in last years (see [15–17] and refs therein). Initially this problem was considered
in AdS background [18–24] and the total multiplicity within this approach was estimated as

MAdS ⇠ s0.33, (1)

QCD	Phase	Diagram	
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QGP	as	a	strongly	coupled	fluid	
•  Conclusion	from	the	RHIC		and	LHC	experiments:		
appearance	of	QGP	(not	a	weakly	coupled	gas	of	quarks	
and	gluons,		but		a	strongly	coupled	fluid).		

																																																										
•  This	makes	perturba4ve	methods	inapplicable	
	
•  The	la\ce	formula4on	of	QCD	does	not	work	for	
descrip4on	of	QGP	forma4on,	since	we	have	to	study	real-
4me	phenomena.	

•  This	has	provided	a	mo4va4on	to	try	to	understand	the	
dynamics	of		QGP	through	the	gauge/string	duality	



Holography:				
	

Connec4on	between		
	
		a	strongly	coupled	quantum	field	theory	in	a	4-
dimensional	space4me		
																
	and		
	
a		5-dimensional	classical	gravity	in	a	special	background		

In	this	talk	--		boaom-up	approach	

Star;ng	point	-	5-dim	background	
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Generaliza;on	of	
1) b(z):   O. Andreev, V.  Zakharov, Phys.Rev, D749 (2006); JHEP 0704(2007) 

3) Anizotropy:           I.A, A. Golubtsova, JHEP 1504 (2015) 011 
 
       (this anisotropy reproduces the energy dependence of multiplicity),  

Alternative: Gubser et al 0804.0434, 1108.229… 
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                                                                                 Y.Yang, P.H.Yuan, 1506.05930 



Multiplicity with anisotropic (Lifshitz-like) background 
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Thermodynamics	(in	5	-dim)	
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Temporal	Wilson	loop	in		the		charged	quark	confinement	background	

S
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Energy	between	quarks	located	along	x-direc;on	ICNFP 2016

Quark Confinement, QCD string, Holographic NG action   

ds2 = b2(z)(�dt2 + dz2 + dx2
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Alterna7ve:	Gubser	et	al	0804.0434,	1108.229…Kiritsis	et	al,	0903.2859,	Evans	et	al	1002.1885	
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Figure 5. The dependence of the spatial string tension
�

�s on orientation and temperature. The
solid lines corresponds to the rectangular Wilson loop with a short extent in the x-direction, while
the dashed lines correspond to short extent in the y-direction (long extents are in transversal plane).
The dotted lines corresponds to the rectangular Wilson loop in the transversal y1y2 plane. (a) Blue
line correspond to anisotropy parameter value � = 1, gray lines correspond to � = 2 and green line
correspond to � = 3 (b). The anisotropy parameter value � = 4 for each line.

4 Wilson loop in a time-dependent background

Now we move to consider thermalization of rectangular Wilson loops in the Lifshitz-Vaidya

background (2.12)-(2.14), which describes collapsing geometry in the Lifshitz-like space-

time. We proceed in a similar manner as in the static case studying three possible config-

urations of spatial Wilson loops.

4.1 Spatial Wilson loops on the xy1 plane

4.1.1 Rectangular strip infinite along the y1-direction

As in Sec. 3 we start from the spatial rectangular Wilson loop on the xy1 plane with the

assumption that one side is infinite along the y1-direction and has finite size along the x-

direction (see 3.1). Here we suppose the dependence v = v(x), z = z(x). The Nambu-Goto

action takes the form similar to (3.6)

Sx,y1(�)
=

Ly

2���

�
dx
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1 � f(z, v)v� 2 � v�z�, (4.1)

where we define � � d
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which coincide with the equations for the AdS case for � = 1.

Eqs. (4.2)-(4.3) obey the following boundary conditions

z(±�) = 0, v(±�) = t, (4.4)

where � is the length of the Wilson loop along the x-direction.
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To solve numerically the equations of motion (4.2)-(4.3) with (4.4) we impose the

following initial conditions

z(0) = z�, v(0) = v�, (4.5)

z�(0) = 0, v�(0) = 0. (4.6)

Figure 6 shows the typical behaviour of the solutions to eqs. (4.2)-(4.3) that satisfy

the boundary conditions (4.4) for di�erent values of the critical exponent �. From these

pictures we see the evolution of string profiles during the formation of the black brane

horizon by the infalling shell at z = 1.

(a) (b)

(c) (d)

Figure 6. File:SNG-WL-C1-work.nb Profiles of the string z(x), z(2) = 0 at di�erent moments of
the boundary time � = 1, 2, 3, 4 ((a),(b),(c),(d), respectively). In (2.14) we take M = 1. COULD
YOU, please, add xz for (b),(c)

Given a solution (v(x), z(x)) to eqs.(4.2)-(4.3) one can compute the functional for the

Nambo-Goto action (4.1).

We note that the dynamical system governed by (4.1) has the following integral of

motion
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R
, (4.7)

where we denote

R = 1 � fv�2 � 2v�z�. (4.8)

Taking into account (4.7)-(4.8) one can represent (4.1) in the following form
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where z� is the turning point defined from the requirements z� = v� = 0 and related with

J as z1/�+1
� = J �1.
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I � z1+1/�
� = z1+1/�

�
1 � fv�2 � 2v�z�

B

Figure 3. A. Wilson loop in the static background. B. Wilson loop in the Vaidya background

2.3 Thermalization time

Thermalization time depends on the physical quantities that are expected to thermalized. This issue
has been discuss in details in our talk [38] and is not discussed here, see also [39, 40] for estimations
of thermalization time of di↵erent variables in the Lifshitz-type background.

3 Physics in the Lifshitz-type background

3.1 Lifshitz-type background

In [31] we have studied collisions of shock waves in the anisotropic background

ds2 = 2⇡↵0
0BBBB@�dt2 + dx2

z2 +
dy2

1 + dy2
2

z2/⌫ +
dz2

z2

1CCCCA , (9)

where ⌫ is the critical exponent.
After collision the black hole is produced and the stationary black hole metric in this background

is [32]

ds2 = z�2
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� f (z)dt2 + dx2

⌘
+ z�2/⌫(dy2

1 + dy2
2) +

dz2

z2 f (z)
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where the blackening function is
f = 1 � mz2/⌫+2. (11)

Motivated by [33, 34] we deform this background as 1
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z2
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dz2

f (z)

!
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where the blackening function takes into account a non-zero chemical potential

f = 1 � (
1

z2/⌫+2
h

+ q2z2
h)z2/⌫+2 + q2z2/⌫+4 (13)

1The problem of finding of shock waves in the background (12) and estimation of the trapped surface in this background is
not solved yet, compare with [23, 35]

ICNFP 2016

3.2 Temporal Wilson loop in the charged quark confinement background

3.2.1 Energy between quarks located along x-direction in the quark confinement background

(12)

The potential of the interquark interaction along x-direction can be extracted from the rectangular
time-like Wilson loop of size T ⇥X, i.e. the loop in which one side is infinite along the time direction,
and the other is along the x direction

W(T, X) = hTrF ei
H

T⇥X dxµAµi ⇠ e�V(X)T , (20)

F means the fundamental representation. Following the holographic approach [41–43] the expectation
value of the Wilson loop in the fundamental representation calculated on the gravity side reads as:

W[C] = e�S (xt) , (21)

where C = T ⇥ X in a contour on the boundary, S xt is the minimal Nambu-Goto action of the string
hanging from the contour C in the bulk

S xt =
1

2⇡↵0

Z
d�1d�2

q
� det(h↵�), (22)

where h↵� is the induced metric of the world-sheet h↵� = gMN@↵XM@�XN , ↵, � = 0, 1, gMN is the back-
ground metric, M,N = 0, . . . , 4, XM = XM(�0,�1) specify the string worldsheet with the worldsheet
coordinates �1, �2. We parametrize the worldsheet as X0 ⌘ t = �0 and X1 ⌘ x = �1 and consider the
static configuration X4 ⌘ z = z(x). The action S (xt) is:

S xt =
T

2⇡↵0
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where 0 means d
dx . If we take z0 = 0 in (23) we get the "potential"
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We consider the symmetrical parametrization z(±`) = 0 and z(0) = z⇤, z0(0) = 0. The distance between
the two endpoints of the string can be represented as
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We consider the case when z⇤ < zhi0) , where zhi0
is the smallest of the horizons, i.e. if f (zhi ) = 0, then

zhi0
< zhi . Therefore f (z) > 0 for 0 < z < z⇤.
We get the energy of the string we subtract the mass of the two free quark [36, 42, 43]
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To guaranty that the expression under the second square root in (25) is positivity we have to inte-
grate along the curve where the potential Vx(z) is a decreasing function. Depending on the parameters
c, zh, ⌫ and q the function Vx(z) can have two extremal points, one minimum and one maximum, or
have no extremal point at all at the interval 0 < z < zhi0

, see Fig. 5 and Fig. 6.
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3.2 Temporal Wilson loop in the charged quark confinement background

3.2.1 Energy between quarks located along x-direction in the quark confinement background

(12)
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F means the fundamental representation. Following the holographic approach [41–43] the expectation
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To guaranty that the expression under the second square root in (25) is positivity we have to inte-
grate along the curve where the potential Vx(z) is a decreasing function. Depending on the parameters
c, zh, ⌫ and q the function Vx(z) can have two extremal points, one minimum and one maximum, or
have no extremal point at all at the interval 0 < z < zhi0
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Holography	for	a	probe	

The	recipe	by	Maldacena	(‘98),	Rey	et	al	(‘98),	Sonnenschein	et	al	(’98)	
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There	is	no	extremal	point	for	the	“poten4al”	in		
		
the	interval	 0 < z < zhi0

EPJ Web of Conferences

Therefore, as for isotropic cases [44–50] 2, we have two cases:
• There is no extremal point in the interval 0 < z < zhi0

. This case corresponds to the deconfinement
phase and dependence of ` on z⇤ has the form as presented in Fig.7.a). We see that there are two
branches indicated by blue and red color, the same ` can be obtained by two di↵erent z⇤, except
z⇤ = z⇤0 where ` reaches its maximal value `0, i.e. ` = `(z⇤) monotonically increases from `(0) = 0
to `(z⇤0 ) = `0 (the first branch shown by the blue color) and ` = `(z⇤) monotonically decreases from
`(z⇤0 ) = `0 to `(zh0 ) = 0 (the second branch). In Fig.7.a) zh0 = zh. The plot in Fig.7.b) shows the
values of the energy between quarks located along x-direction as function of z⇤ for two branches.
The corresponding values of the energy as functions ` are presented in Fig.7.c). As shown in this
plot, the values of energy corresponding to the second branch are larger than those for the first one.
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Figure 7. Above the critical point (deconfinment): a) L = L(z⇤), b) Ex = Ex(z⇤) and c)Ex = Ex(`). Here we put
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0
= 1/⇡

• There are two extremal points in the interval 0 < z < zhi0
, zmin = z0 and zmax = z00 and the potential

is a decreasing function only on the intervals

0 < z < zmin and zmax < z < zhi0
, (28)

so we can guarantee that V(z)/V(z⇤) < 1 only in the region (28).
This case corresponds to the confinement phase and the dependence of L on z⇤ is presented in
Fig.8.a). Suppose that V(z) has a local minimum at z = z0. In this case the potential Vx(z) is a
decreasing function from z = 0 up to z = z0. The first branch L = L(z) is shown by the blue line in
the plot in Fig.8.a). and L(z) ! 1 when z ! z0 � 0. For z0 < z < z00 L = L(z) gets an imaginary
part and at z = z00 starts the second branch. For the second branch E2 < E(`) < E02.

In Fig.9 we present the same quantities as in Fig.7 and Fig.8 at the same parameters except that
in Fig.7 and Fig.8 ⌫ = 1 (isotropic case) and in Fig.9 ⌫ = 4 (anisotropic case, longitudinal orientation
of the Wilson loop). The confinement solution is realized on the first branch discussed above. Let us
estimate the string tension for this configuration. Suppose that

V 0(z)|z=z0 = 0, V 00(z0) > 0. (29)
2Note, that the isotropic case with the confinement factor has been studied at zero chemical potential in [44, 45] and with

nonzero chemical potential in [46–50].
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Near z = z0 we have V 00(z0) > 0 ands
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We can also calculate the energy near z⇤ = z0 using (27). We have
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� T
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1q
V 00(z0)
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Therefore we get
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p
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0
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�x =
Vx(z0)
2⇡↵0

(33)

3.2.2 Energy between quarks located along y-direction in the quark confinement background

(12)

The Nambu-Goto action S yt of the string hanging from the contour C, being the rectangular with sites
along the time direction and one of transversal directions, in the bulk is

S yt =
Ti

2⇡↵0

Z
b(z)
z2

q
z2�2/⌫ f (z) + z02 dx. (34)

Below the critical point (confinement) 

The		“poten4al”	is	a	decreasing	func4on	only	on	the	intervals	

0 < z < z
min

and z
max

< z < z
hi0 V 0(z)|z=z0 = 0, V 00(z0) > 0

																											Similar to analysis performed for the isotropic case: 
                                      O. Andreev, V.  Zakharov, JHEP 0704(2007) 
                                      M.Mia et al, Phys.Lett. B694 (2011)460 (2011) 
                                      P.Colangelo, F.Giannuzzi, S.Nicotri,  
                                                             Phys.Rev. D83 (2011) 035015	
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Energy	between	quarks	located	along	transversal	y-direc;on	
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Temporal	Wilson	loop	in		the		charged	quark	confinement	background	



Holographic	anisotropic	QCD	phase	diagram	
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a b c

d e f

Figure 11. The same quantities at the same parameters as in Fig.9 except that now we deal with the transversal
orientation of the Wilson loop, ⌫ = 4. We see that both values of c, c = 1.2 and c = 2, correspond to the
confinement phase: a) and d) L = L(zs), b) and e) W = W(zs) (note that in this case we make a di↵erent
subtraction), c) and f) W = W(L) .
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Figure 12. The deconfinement transition line in the (µ,T ) plane. Phase transitions lines dividing the plane in
two regions, a hadron phase near the origin, and a deconfined phase beyond the curve. The red line(points) cor-
responds to the isotropic case, the blue line (points) corresponds to the Ex in the anisotropic case with ⌫ = 4, the
green to Ey in the same anisotropic case. The dots represent numerical data points, while the solid interpolating
lines are included "by hands".

Fig.12 shows the dependence of the transition line on the orientation. Since quarks can be arbitraly
oriented in respect to the collision line, this dependence on the orientation leads to a broadening of the
line separating confinement and deconfinement phases in the (µ,T )-plane. Decreasing of anisotropy
decreases the broadening of the phase transition boundary.

Let us remind that in isotropic case the confinement/deconfinment diagram has been studied in lat-
tice QCD. Experimentally the phase boundary between hadronic matter and the quark - gluon plasma
in relativistic heavy ion collisions is probing using the HRM [51, 52]

Phase	transi;ons	lines		divide	the	plane	in	two	regions:		
a	hadron	phase	near	the	origin,		
and	a	deconfined	phase	beyond	the	curve.		
The	red	line	corresponds	to	the	isotropic	case.	
	
Anisotropic	case	nu=4:	
					the	blue	line	corresponds	to	quarks	located	along	the	longitudinal	x-direc;on	,		
					the	green	line	corresponds	to	quarks	located	along	the	transversal	y-direc;on	
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Direct	photons	and	electric	conduc;vity	
The	thermal-photon	produc4on	from	the	QGP	plays	an	essen4al	role,	since	photons	
aner	they	are	produced	in	HIC		almost	do	not	interact	with	the	QGP	
and,	therefore,		they	give	us		the	local	informa4on	on	heavy	ion	collisions.		

The	photon-emission	rate	is	related	to	the	retarded	correlator	of	currents	in	momentum	space	
	

G

R

µ⌫

(k) = i

Z
d

4(x� y)eik·(x�y)
✓(x0)h[Ja

µ

(x), Jb

⌫

(0)]i,

d� = � d3k

(2⇡)3
e2nb(|k|)

|k| Im
⇥
tr
�
⌘µ⌫GabR

µ⌫

�⇤
k0=|k| ,

S.I.Finazzo	and	R.Rougemont,	
Phys.Rev.D		93,	(2016)	034017	
	I.Iatrakis,	E.Kiritsis,	C.Shen	and	D.L.Yang,	
arXiv:1609.07208	[hep-ph]	



PHOTON PRODUCTION

[Source: C. Shen, talk at ECT*, Trento 12/2015]

DIRECT 
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Radiation of photons and dileptons has been proposed as a
promising  tool to characterize the initial state of heavy ion collisons

DIRECT PHOTONS
� emerge directly from a particle collison
� represent less than 10% of all detected photons
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Chauduri, arXiv: 1207.7028 (2012)

Theoretical models can be used to 
identify these sources and their 

relative importance in the spectrum
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Direct	photons	and	electric	conduc;vity	
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Electric	conduc;vity	

Isotropic:						q=0,	0.1,	0.2			gray,	blue	and	green	lines		
Anisotropic:	q=0,	0.1,	0.2		are	shown	by	brown,		
																																													darker	cyan	and	darker	green.		
Dashed:	validity	of	the	approxima4on	(below	the	red	line)	
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Since for w = 0 the derivative ⇣0? = 0 and we have
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1/zh and it dependence on the temperature is read from (18) and approximately
1
zh
⇡ 2⇡⌫

1 + ⌫
T

1 � ( ⌫+1
⌫ )

2+3⌫
⌫ q2
⇣

1
2⇡T

⌘ 2+4⌫
⌫

(65)

In what follows we use this approximation. Therefore, the dependence of the electric conductivity on
the temperature and the chemical potential is given by

|⇣?(T, ⌫, q)| ⇡
⇣ 2⇡⌫
1 + ⌫

⌘3�2/⌫ T 3�2/⌫⇣
1 � ( ⌫+1

⌫ )
2+3⌫
⌫ q2
⇣

1
2⇡T

⌘ 2+4⌫
⌫
⌘3�2/⌫

(66)

Form this formula we see, that increasing anisotropy we increase the electric conductivity at hight
temperatures, see Fig.13. We also see that there is a critical temperature T0 = T0(⌫, q) such that for
T < T0 the conductivity decreases as we increase ⌫.
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Figure 13. The electric conductivity for ⌫ = 1 and ⌫ = 4 and di↵erent values of q: a) q = 0, b) q = 0.2

Here we have to note that equation (66) is valued only for T > Tapp, see Fig.14. In Fig.14 and in
Fig.15 we plot the electric conductivity as function of T for ⌫ = 1 and ⌫ = 4 for di↵erent values of q
and the constant c specifying the factor b. We see that the confining factor b(z) does not change the
qualitative picture too much.

Note, that in the end of this section few comments are in order. Almost all theoretical predictions
underestimate the direct-photon spectra. Several attempts [58, 59], including the e↵ects from strong
magnetic fields [60], have been undertaken to fit theoretical predictions to LHC experimental data.
As it is stressed in [56] direct photons calculations [53, 56, 61, 62] from holography have to be
complemented by the medium evolution and the photons production from other phases. This also
concerns to our consideration. Here we have just presented the preliminary estimation of the role of
the chemical potential, the Lifshitz type anisotropy and the confining factor on photon emission rate.
To give predictions for direct photons that can be observed at NICA one has to perform the study
similar to [56]. We have seen that at hight temperature the anisotropy of the Lifshitz type increases
the photon production and the chemical potential also increases it, meanwhile for temperature less
then a critical one, they act in the opposite direction.
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Figure 15. The electric conductivity for ⌫ = 1, di↵erent values of q and c. The gray solid

lines show the electric conductivity for c = 1 and di↵erent values of q = 0, 0.1, 0.2 (thin,

middle and thick lines). The blue and green solid lines show the electric conductivity for

c = 1 and c = 1.2, respectively, and di↵erent values of q = 0, 0.1, 0.2 (thin, middle and thick

lines). The dashed lines show validity of the approximation: only in the regions where the

dashed lines are below the red line we can use our approximation.
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Figure 16. The electric conductivity for ⌫ = 4 and di↵erent values of q and c. The brown

solid lines show the electric conductivity for c = 0 and di↵erent values of q = 0, 0.1, 0.2

(thin, middle and thick lines). The darker cyan and green solid lines show the electric

conductivity for c = 1 and c = 1.2 and di↵erent values of q = 0, 0.1, 0.2 (thin, middle

and thick lines). The dashed lines show validity of the approximation: only in the regions

where the dashed lines are below the red line we can use our approximation.
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Conclusion:	
Holographic	models	are	some	kind	of	phenomenological	models		
with	few	number	of	parameters	

Anisotropy	dras;cally	change	standard	holographic	calcula;ons,	in	par;cular,	
															Wilson	loops,	and	quark	poten;al	
															Jet	quenching	
															Drag	forces	
															sheet	viscosity	and	therefore	ellip;c	flows	
															suscep;bility	
															thermaliza;on	;me	
		

We	have	considered	the	anizotropic		model	that	describes:	
mul;plicity,	quark	confinement;	
	
	predicts:	
smeared	phase	transi;on,	
anizotropy	in	hadron	spectrum	(for	a	short	;me	aoer	collisions)	


