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Why modify gravity? 

Why modify gravity?  
- cosmological constant problems, 
- non-renormalizability problem, 
- benchmarks for testing General Relativity 
- theoretical curiosity. 
!
Many ways to modify gravity:  
- f(R), scalar-tensor theories, 
- Galileons, Horndeski (and beyond) theory, KGB, Fab-four,  
- higher-dimensions, DGP,  
- Horava, Khronometric 
- massive gravity 
- Vector-tensor theories (EM, Proca, “Extended” Proca)

Propagating massless graviton and propagating (massive) vector 



Galileon/Horndeski theory

Most general galileon shift-symmetric action:

Equations of motion are of the second order both in 
the metric and the scalar field -> 

No extra degrees of freedom



Black holes are bald (?)

- Gravitational collapse... 

- Black holes eat or expel surrounding matter 

- Their stationary phase is characterised by a limited number of charges 

- No details about collapse  

- Black holes are bald

No hair theorems/arguments dictate that adding degrees of freedom 
lead to trivial (General Relativity) or singular solutions. 

!
E.g. in the standard scalar-tensor theories BH solutions are GR black 

holes with constant scalar.



No hair for galileon

G2(X), G2(X), G4(X), G5(X)

Hui&Nicolis’12

Shift-symmetric galileon, with arbitrary 
Assume that: 
!
(i) spacetime and scalar field is static spherically symmetric, 
!
!
(ii) spacetime is asymptotically flat, and  
     and the norm of the current        is finite (at the horizon)  
(iii) there is a canonical kinetic term in the action and       are such that  
their derivatives                           contain only positive or zero powers of  
!
!
!
!

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2d⌦2
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3.1. A no-hair theorem

Hui and Nicolis were the first to consider and point out no-hair arguments for

shift symmetric galileon theories [43]. A specific way out to their argument was

discussed in [35], where an explicit solution method was found and generic solutions

were given. Sotiriou and Zhou looked in greater detail to the no-go theorem and

developed the arguments of Hui and Nicolis while providing another class of numerical

solutions [44, 42]. A straightforward generalization to the arguments of Hui and Nicolis

was developed by Maselli et al. [45] to extend to cases of linear time dependence (12)

but, as we will see in the next section, this case nicely bifurcates the no-hair theorem

by use of the field equations. Thus, given all these works and considerations, let us first

concentrate on the static q = 0 case giving the following no-go theorem.

Consider a shift symmetric galileon theory as (1) where G2, G3, G4, G5 are arbitrary

functions of X. We now suppose that:

(i) spacetime is spherically symmetric and static (10) while the scalar field is also

static (q = 0),

(ii) spacetime is asymptotically flat, �0
! 0 as r ! 1 and the norm of the current

J2 is finite on the horizon,

(iii) there is a canonical kinetic term X in the action and the Gi functions are such

that their X-derivatives contain only positive or zero powers of X.

Under these hypotheses, we conclude that � is constant and thus the only black hole

solution is locally isometric to Schwarzschild.

Indeed, using the symmetry assumptions, it is useful here to rewrite the line element

(10) as

ds2 = �A(r)dt2 +
dr2

A(r)
+ ⇢(r)2(d✓2 + sin2✓ d'2).

The norm of the current is JµJµ = (Jr)2/A. By assumption, the norm of the current does

not diverge on the horizon. Hence, when we are the horizon location A = 0, Jr can only

vanish. The conservation equation now gives rµJµ = ⇢�2(⇢2Jr)0 = 0 which implies that

⇢2Jr is constant. The quantity ⇢ is the areal radius, used to measure the area of constant

radius spheres. The latter should not be singular (zero or infinite), even at the horizon.

This means that ⇢2Jr vanishes at the horizon and hence it vanishes everywhere. Jr is

therefore zero everywhere. Now Jr can be put under the form Jr = A�0F (�0; g, g0, g00),
where the explicit expression of F is given in [42]. At any point, either F or �0 has
to vanish. Under assumption (iii) that was made on the Lagrangian and because of

asymptotic flatness, F ! �G2X = constant as r ! +1. Hence �0 is zero everywhere.

Then the only solution is locally isometric to the GR solution. We should emphasize

that the physical hypothesis in this theorem is that the norm of the current is finite as

it is associated to the shift symmetry of the Lagrangian.
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XdG(X)i/dX

A no-hair theorem then follows: the metric is Schwarzschild and the 
scalar field is constant



Avoiding no-hair theorem 
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Babichev et al., etc
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schild black hole

No hair
Hui-Nicolis theorem

GiX contains ne-
gative powers of X

GiX contains only
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Figure 1. Hair versus no-hair

(to be fixed relative to the black hole mass). Therefore J2 is actually singular at the

horizon because Jr = �f�0
� 4↵h0

h
f(f�1)

r2 6= 0. At this point one needs to invoke extra

input to conclude about the physical relevance of solutions with divergent norm of the

current J . For this solution of the theory (15), the Noether current cannot be a physical

observable, in particular, it cannot be coupled to matter directly. This question requires

further study.

3.3. Explicit solutions of hairy black holes

We shall now concentrate on explicit black hole solutions for the theory (11) setting

⌘ = 1
2
. Although the method works for any shift symmetric theory, the advantage here

is that (11) is particularly elegant in giving explicit solutions. In fact, we have the

general solution which we turn to now.

The general solution of theory (11) to the metric (10) and � = �(t, r) is given as a

solution to the following third order algebraic equation with respect to
p

k(r):

(q�)2
✓

+
r2

2�

◆2

�

✓

2+ (1� 2�⇤)
r2

2�

◆

k(r) + C0k
3/2(r) = 0, (16)

where C0, q are integration constants and  = 1,�1, 0 is the horizon curvature. Once a



Constructing hairs

Jr = 0

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2d⌦2
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The variation of the action with respect to � yields

rµJ
µ = 0, Jµ = (⌘gµ⌫ � �Gµ⌫) @⌫�.

Here, the key term in the action is the John term from Fab 4 which has nice integrability

properties, as we will see. Although our discussion will be associated to the specific

action (11), the essential results go through quite generically. Sometimes integrability

has to be sacrificed on the way in the sense that one has to use numerical methods to

obtain solutions.

The e↵ective energy momentum tensor associated to the galileon is precisely

Tµ⌫ = �Eµ⌫ + Gµ⌫ + gµ⌫⇤. As we noted above, this tensor must obey the symmetries

of (10) but not the scalar itself. Note for example that the Einstein plus cosmological

constant term do not contribute to the Ttr = 0 equation but other terms in Etr do. This

equation generically describes the inflow of matter in a black hole geometry and will

inevitably constrain drastically the galileon field if it is not static. The first key result

is the following:

Consider the shift symmetric theory (11) with spacetime symmetry given by (10).

Starting with � = �(t, r) the only compatible ansatz with the field equations is

� = qt+  (r). (12)

Indeed, taking � = �(t, r), the flow equation Etr = 0 yields the general solution for � as

a separable function of t and r [35]. This function, when inserted in the remaining field

equations, gives (12) as the only possible ansatz (see the general discussion in [36]).

The only solution to escape the rule of linear time dependence imposed in (12) is

to consider self-tuning solutions for flat spacetime. For theory (11), this holds in the

case of ⌘ = 0 and ⇤ 6= 0 . This is a simple example of a time dependent scalar field

immersed in a static spacetime. Indeed, the solution reads

� = �0 + �1(r
2
� t2) (13)

with �0,�1 integration constants while f = h = 1 with  = 1 for (10). The self-tuning

condition reads VJohn�2
1 = ⇤ for arbitrary bulk ⇤, and constant VJohn [20, 36]¶.

We expect the linear time ansatz (12) to be true for generic shift symmetric

theories (the discussion in [36] includes the Paul term; solution (13) is also valid for this

term, see [20]). It is surprising and highly non trivial that there exist time dependent

configurations for a static spacetime. Mathematically, we can understand that if time

dependence is linear in t, we get explicitly ODE’s rather than PDE’s once we input (12)

in the field equations. It is worthwhile however to make a remark on the non-trivial

physical significance of (10) and (12).

¶ Note that the same solution in a cosmological coordinate system is a purely time dependent function,
� = �0 + �1T 2, where T is FRW proper time. This solution illustrates what we mentioned earlier, a
time dependent galileon yields generically a time and space dependent galileon in a static ansatz.

Time-dependent scalar !

The only consistent solution for this ansatz is when 
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3.2. The no-hair theorem and hairy black holes

There actually exist (at least) two ways to construct black hole solutions with a non-

trivial scalar field, summarized in Fig. 1. The first of these is to have such a theory

as to be able to set everywhere Jr = 0 without imposing that �0 = 0. Generically in

this case we will either give up asymptotic flatness or the presence of a canonical kinetic

term. The second is to include a Gauss-Bonnet term in the action coupled to a linear

scalar field. We now look at these methods in turn.

The first family amounts to necessarily taking higher derivative terms which allows

F = 0 without �0 = 0 in the notation of the above theorem. This case is naturally

realized for the time-dependent ansatz (12). The key result is the following [46]:

Consider an arbitrary shift symmetric Horndeski (or beyond Horndeski) theory and

a scalar-metric ansatz dictated by (10), (12) with q 6= 0. The only solution to the

scalar field equation E� = 0 and the “matter flow” metric equation Etr = 0 is given

by Jr = 0.

Indeed, as demonstrated in [46] we have that:

�qJr = Etrf,

and given that E� = rµJµ = 0, the result trivially follows. The current now reads

JµJµ = �A(J t)2 + (Jr)2/A,

and J t can even be singular like 1/
p

A while the current is regular on the horizon. We

emphasize that the physical requirement of the no-hair theorem above is now satisfied

by virtue of the field equations.

If the theory is of higher order there will be solutions other than the trivial case

�0 = 0 as we will see in a moment. In fact requiring that �0 = 0 and q 6= 0, in the case

of (11), always leads to singular solutions as was shown very recently in [47]. Although

a general proof for an arbitrary shift symmetric theory is not known, we expect it to

remain true. Under the assumption that q 6= 0, the field equations dictate regularity of

the current and indicate the presence only of non-trivial scalar field solutions.

On the other hand we note that the integration constant associated to the scalar

field equation is equal to zero since Jr = 0. Hence, the would be “primary charge” is set

to zero whenever time dependence is present and is replaced by the velocity parameter q.

If q = 0, then we have to go back to the no-hair argument and the regularity of J

in order to set Jr = 0 by hand.

Therefore, we see that imposing time dependence immediately renders the no-

hair theorem irrelevant, and a higher order Horndeski theory such as (11) immediately

imposes Jr = 0 with �0
6= 0. Furthermore, Jr = 0 simultaneously annihilates two of the

field equations and gives a mathematically consistent system of field equations as for

three variables f , h,  there are three remaining independent field equations: Jr = 0,

Err = 0 and Ett = 0. Therefore non trivial solutions to the field equations a priori exist.
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The norm of the current:

The physical requirement of no-hair theorem is 
automatically satisfied by virtue of EOMs.
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Explicit example
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3. Horndeski black holes in shift symmetric theories

We will now turn to black hole spacetimes of theories with shift symmetry. Here we

should note that although we are mainly interested in spherical horizon geometries for

the 4-dimensional solutions, we shall consider for generality, a constant curvature 2 space

with line element

dK2 =
d�2

1� �2
+ �2d�2, (9)

where for  = 1 we have spherical symmetry, for  = 0 planar symmetry and for  = �1

hyperbolic symmetry. The additional cases with  = �1, 0 are included here for they

appear naturally as black hole horizons for negative (e↵ective or bulk) cosmological

constant and for Lifshitz type geometries. Although such geometries do not have an

immediate interest in cosmology, we include these cases here for completeness as the

parameter  appears simply as some normalized parameter in the equations of motion.

Additionally we take a locally static spacetime and thus we have

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2dK2. (10)

The crucial point to note here is that since the scalar field appears only through its

derivatives in the Lagrangian, one a priori needs not impose staticity for the scalar.

In fact shift symmetric galileons naturally inherit some time dependence [32, 33] in

cosmological settings, which is translated to a space and time dependence in a spherically

symmetric setting (10). This is also true for self-tuning solutions [20] as we will see later

on in this section (see equation (13)). However, this dependence on time cannot be

arbitrary. Indeed, in order to have a well defined system of field equations, the 2 tensor

that is associated to the variation of the galileon terms with respect to the metric must

be static and spherically symmetric. In other words, the associated energy momentum

tensor of the galileon must obey the symmetries of spacetime, but not the galileon

itself!k

Treating the general case is possible but technically very tedious, so we will choose

to concentrate on specific sub-theories for which one can get analytic results. So let us

concentrate on a subset shift symmetric galileon theory notably,

L

⇤CGJ = R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤. (11)

This Lagrangian can be obtained by choosing G4 = 1 + �X and G2 = �2⇤ + 2⌘X.

Although the coupling ⌘ is canonically normalized to 1
2
, we keep it as ⌘ momentarily for

bookkeeping purposes. The field equations are

Eµ⌫ = Gµ⌫ � ⌘
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r��

⇤

= 0,

k The same guiding principle is used in GR with a complex scalar field in order to construct a hairy
”Kerr” type solution by Herdeiro and Radu [34].
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that is associated to the variation of the galileon terms with respect to the metric must

be static and spherically symmetric. In other words, the associated energy momentum

tensor of the galileon must obey the symmetries of spacetime, but not the galileon

itself!k

Treating the general case is possible but technically very tedious, so we will choose

to concentrate on specific sub-theories for which one can get analytic results. So let us

concentrate on a subset shift symmetric galileon theory notably,
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This Lagrangian can be obtained by choosing G4 = 1 + �X and G2 = �2⇤ + 2⌘X.
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follows from general galileon with 

The general solution is given by the solution of the algebraic equation:
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(to be fixed relative to the black hole mass). Therefore J2 is actually singular at the

horizon because Jr = �f�0
� 4↵h0

h
f(f�1)

r2 6= 0. At this point one needs to invoke extra

input to conclude about the physical relevance of solutions with divergent norm of the

current J . For this solution of the theory (15), the Noether current cannot be a physical

observable, in particular, it cannot be coupled to matter directly. This question requires

further study.

3.3. Explicit solutions of hairy black holes

We shall now concentrate on explicit black hole solutions for the theory (11) setting

⌘ = 1
2
. Although the method works for any shift symmetric theory, the advantage here

is that (11) is particularly elegant in giving explicit solutions. In fact, we have the

general solution which we turn to now.

The general solution of theory (11) to the metric (10) and � = �(t, r) is given as a

solution to the following third order algebraic equation with respect to
p

k(r):

(q�)2
✓

+
r2

2�

◆2

�

✓

2+ (1� 2�⇤)
r2

2�

◆

k(r) + C0k
3/2(r) = 0, (16)

where C0, q are integration constants and  = 1,�1, 0 is the horizon curvature. Once a
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solution to the above algebraic equation is given, the metric components are

h(r) = �

µ

r
+

1

�r

Z

k(r)

+ r2

2�

dr, f =
(+ r2

2� )
2�h

k(r)
, (17)

whereas the scalar field (12) reads

 0 = ±

p

r

h(+ r2

2� )

✓

q2(+
r2

2�
)h0

�

1 + 2�⇤

4�2
(h2r2)0

◆1/2

.

An explicit proof can be found in [35] where here for the master equation we have

rescaled C0 by � and set ⌘ = 1
2
with respect to [35]. We note that the algebraic

equation is parametrized by q�, �⇤ and C0 and the overall sign of �. We now work out

the di↵erent classes of solutions according to their asymptotic behavior for large r.

3.3.1. Class I: dS and adS asymptotics For dS or adS asymptotics it is easy to see

from (16) that k = ↵r4 = 1�2�⇤
2�C0

r4 as r ! 1. Since we want f = h for r ! 1

we get that C0 = 1�2�⇤p
�

. Therefore, once we fix C0 to this value, keeping q arbitrary,

we have asymptotically de Sitter or anti de Sitter solutions. The generic solution is

found as a solution to the algebraic solution, but a simple example is the self-tuned

Schwarzschild-(anti-)de Sitter spacetime which is given by

k0(r) =

✓

+
r2

2�

◆2

, (18)

where now the parameter q0 is fixed:

q20� = (1 + 2�⇤). (19)

For de Sitter asymptotics, we take  = 1 and the solution reads

f = h = 1�
µ

r
�

⇤e↵

3
r2,  0 = ±

q

h

p

1� h, (20)

where the e↵ective cosmological constant ⇤e↵ = �

1
2� and hence � < 0 for ⇤e↵ > 0.

This solution has self-tuning properties since the vacuum value of ⇤ does not interfere

with the spacetime geometry. It is tuned by the integration constant q0 via (19). It is

quite remarkable that this self-tuning solution, first noted for pure de Sitter [50], can be

extended for generic black holes [35]. A characteristic of this particular solution is that

the kinetic scalar X = q20/2 is a constant.

This self-tuning solution of de Sitter is therefore very special since q0 (and not only

C0) is fixed with respect to the parameters of the action (19). But in fact we will now

argue that self tuning remains beyond this particular value, q = q0, where of course X is

not constant. This would mean that a change in the bulk cosmological constant will not

change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where

k0 is given in (18). It is then easy from (16) to show that

k(r) = �

✓

1 +
r2

2�

◆2
 

1 +
2✏

1 + 6�⇤� (1� 2�⇤) r
2

2�

!

+O(✏2).
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solution to the above algebraic equation is given, the metric components are
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An explicit proof can be found in [35] where here for the master equation we have

rescaled C0 by � and set ⌘ = 1
2
with respect to [35]. We note that the algebraic

equation is parametrized by q�, �⇤ and C0 and the overall sign of �. We now work out

the di↵erent classes of solutions according to their asymptotic behavior for large r.

3.3.1. Class I: dS and adS asymptotics For dS or adS asymptotics it is easy to see

from (16) that k = ↵r4 = 1�2�⇤
2�C0

r4 as r ! 1. Since we want f = h for r ! 1

we get that C0 = 1�2�⇤p
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. Therefore, once we fix C0 to this value, keeping q arbitrary,

we have asymptotically de Sitter or anti de Sitter solutions. The generic solution is

found as a solution to the algebraic solution, but a simple example is the self-tuned

Schwarzschild-(anti-)de Sitter spacetime which is given by

k0(r) =
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, (18)

where now the parameter q0 is fixed:

q20� = (1 + 2�⇤). (19)

For de Sitter asymptotics, we take  = 1 and the solution reads

f = h = 1�
µ

r
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⇤e↵

3
r2,  0 = ±

q

h
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1� h, (20)

where the e↵ective cosmological constant ⇤e↵ = �

1
2� and hence � < 0 for ⇤e↵ > 0.

This solution has self-tuning properties since the vacuum value of ⇤ does not interfere

with the spacetime geometry. It is tuned by the integration constant q0 via (19). It is

quite remarkable that this self-tuning solution, first noted for pure de Sitter [50], can be

extended for generic black holes [35]. A characteristic of this particular solution is that

the kinetic scalar X = q20/2 is a constant.

This self-tuning solution of de Sitter is therefore very special since q0 (and not only

C0) is fixed with respect to the parameters of the action (19). But in fact we will now

argue that self tuning remains beyond this particular value, q = q0, where of course X is

not constant. This would mean that a change in the bulk cosmological constant will not

change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where

k0 is given in (18). It is then easy from (16) to show that

k(r) = �
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1 +
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1 +
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1 + 6�⇤� (1� 2�⇤) r
2
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solution to the above algebraic equation is given, the metric components are
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An explicit proof can be found in [35] where here for the master equation we have

rescaled C0 by � and set ⌘ = 1
2
with respect to [35]. We note that the algebraic

equation is parametrized by q�, �⇤ and C0 and the overall sign of �. We now work out

the di↵erent classes of solutions according to their asymptotic behavior for large r.

3.3.1. Class I: dS and adS asymptotics For dS or adS asymptotics it is easy to see

from (16) that k = ↵r4 = 1�2�⇤
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r4 as r ! 1. Since we want f = h for r ! 1

we get that C0 = 1�2�⇤p
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. Therefore, once we fix C0 to this value, keeping q arbitrary,

we have asymptotically de Sitter or anti de Sitter solutions. The generic solution is

found as a solution to the algebraic solution, but a simple example is the self-tuned

Schwarzschild-(anti-)de Sitter spacetime which is given by
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where now the parameter q0 is fixed:
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where the e↵ective cosmological constant ⇤e↵ = �

1
2� and hence � < 0 for ⇤e↵ > 0.

This solution has self-tuning properties since the vacuum value of ⇤ does not interfere

with the spacetime geometry. It is tuned by the integration constant q0 via (19). It is

quite remarkable that this self-tuning solution, first noted for pure de Sitter [50], can be

extended for generic black holes [35]. A characteristic of this particular solution is that

the kinetic scalar X = q20/2 is a constant.

This self-tuning solution of de Sitter is therefore very special since q0 (and not only

C0) is fixed with respect to the parameters of the action (19). But in fact we will now

argue that self tuning remains beyond this particular value, q = q0, where of course X is

not constant. This would mean that a change in the bulk cosmological constant will not

change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where

k0 is given in (18). It is then easy from (16) to show that
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An explicit proof can be found in [35] where here for the master equation we have

rescaled C0 by � and set ⌘ = 1
2
with respect to [35]. We note that the algebraic

equation is parametrized by q�, �⇤ and C0 and the overall sign of �. We now work out

the di↵erent classes of solutions according to their asymptotic behavior for large r.

3.3.1. Class I: dS and adS asymptotics For dS or adS asymptotics it is easy to see

from (16) that k = ↵r4 = 1�2�⇤
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r4 as r ! 1. Since we want f = h for r ! 1

we get that C0 = 1�2�⇤p
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. Therefore, once we fix C0 to this value, keeping q arbitrary,

we have asymptotically de Sitter or anti de Sitter solutions. The generic solution is

found as a solution to the algebraic solution, but a simple example is the self-tuned

Schwarzschild-(anti-)de Sitter spacetime which is given by

k0(r) =
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, (18)

where now the parameter q0 is fixed:

q20� = (1 + 2�⇤). (19)

For de Sitter asymptotics, we take  = 1 and the solution reads

f = h = 1�
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where the e↵ective cosmological constant ⇤e↵ = �

1
2� and hence � < 0 for ⇤e↵ > 0.

This solution has self-tuning properties since the vacuum value of ⇤ does not interfere

with the spacetime geometry. It is tuned by the integration constant q0 via (19). It is

quite remarkable that this self-tuning solution, first noted for pure de Sitter [50], can be

extended for generic black holes [35]. A characteristic of this particular solution is that

the kinetic scalar X = q20/2 is a constant.

This self-tuning solution of de Sitter is therefore very special since q0 (and not only

C0) is fixed with respect to the parameters of the action (19). But in fact we will now

argue that self tuning remains beyond this particular value, q = q0, where of course X is

not constant. This would mean that a change in the bulk cosmological constant will not

change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where

k0 is given in (18). It is then easy from (16) to show that

k(r) = �
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Evaluating f and h, we see that the black hole solution remains unchanged

asymptotically and in particular that the e↵ective cosmological constant is not modified

to this order in ✏ [51]. In other words, the self-tuning mechanism remains true even if

the bare cosmological constant changes. The novel q = q0+ ✏ tunes to accommodate the

new value of the bulk cosmological constant, while the black hole solution is di↵erent

locally but has the same asymptotic behavior.

This class of solutions also includes the “static” q = 0 solutions. This condition was

first imposed by Rinaldi [52] to obtain exact solutions in asymptotically adS spacetimes,

although the scalar field could become imaginary beyond the black hole horizon. Indeed,

Eq.(8) of [52] implies imaginary scalar field inside the horizon. Rinaldi’s solution was

extended in [53, 54] who cured the problem by including a bare cosmological constant.

The scalar field was found to be divergent at the horizon even though the norm was

finite. At the end of the day, this is not necessarily a problem, since at the level of the

action, only derivatives of the galileon field itself are present and on-shell the action is

well behaved. Indeed, from (16) we obtain:

k(r) =
1

C2
0

✓

2+ (1� 2�⇤)
r2

2�

◆2

.

Executing the integral (17) we can evaluate directly h. We set for convenience  = 1,

i.e., spherical symmetry and � > 0. We also fix C0 accordingly, in order to avoid a solid

deficit angle. In other words, we set the constant term in h to be equal to 1. We then

get the “static” solution, first discovered in [52] for ⇤ = 0 and extended in [35, 53, 54]:

h(r) = 1�
µ

r
�

⇤e↵

3
r2 �

(1 + 2�⇤e↵)2

8�⇤e↵

Arctan
�

r/
p

2�
�

r/
p

2�
,

f(r) =
(2� + r2)h

2�(rh)0
, �02 =

(1 + 2�⇤e↵)r2(1� 2�⇤e↵ � 2⇤e↵r2)2

⇤e↵(1� 2�⇤e↵)(2� + r2)3h(r)
,

(21)

with an e↵ective cosmological constant ⇤e↵ = 2�⇤�1
2�(2�⇤+3)

.

3.3.2. Class II: Static Universe From (16) we see that k ⇠ r2 as r ! 1 for

q2� = (1 � 2�⇤) while asymptotically h = 1 and f = r2

2� . A typical example in

this class of metrics is the black hole embedded in an Einstein static universe, which is

obtained with C0 = 0 and, for simplicity, 2�⇤ = �1. The solution reads

h = 1�
µ

r
, f =

⇣

1�
µ

r

⌘

✓

1 +
⌘r2

�

◆

, (22)

whereas the radial part of the scalar field is given by

 0 = ±

q

h

s

µ

r(1 + ⌘
� r

2)

An alternative way to obtain explicit solutions can be given in this class [51]. Let

us start with the de Sitter solution (18) k0 in Class II. Consider the Euclidean division

of the third order polynomial in (16) by
p

k �

p

k0 which is a factor of the third order

Black holes and stars in Horndeski theory 16

Evaluating f and h, we see that the black hole solution remains unchanged

asymptotically and in particular that the e↵ective cosmological constant is not modified

to this order in ✏ [51]. In other words, the self-tuning mechanism remains true even if

the bare cosmological constant changes. The novel q = q0+ ✏ tunes to accommodate the

new value of the bulk cosmological constant, while the black hole solution is di↵erent

locally but has the same asymptotic behavior.

This class of solutions also includes the “static” q = 0 solutions. This condition was

first imposed by Rinaldi [52] to obtain exact solutions in asymptotically adS spacetimes,

although the scalar field could become imaginary beyond the black hole horizon. Indeed,

Eq.(8) of [52] implies imaginary scalar field inside the horizon. Rinaldi’s solution was

extended in [53, 54] who cured the problem by including a bare cosmological constant.

The scalar field was found to be divergent at the horizon even though the norm was

finite. At the end of the day, this is not necessarily a problem, since at the level of the

action, only derivatives of the galileon field itself are present and on-shell the action is

well behaved. Indeed, from (16) we obtain:

k(r) =
1

C2
0

✓

2+ (1� 2�⇤)
r2

2�

◆2

.

Executing the integral (17) we can evaluate directly h. We set for convenience  = 1,

i.e., spherical symmetry and � > 0. We also fix C0 accordingly, in order to avoid a solid

deficit angle. In other words, we set the constant term in h to be equal to 1. We then

get the “static” solution, first discovered in [52] for ⇤ = 0 and extended in [35, 53, 54]:

h(r) = 1�
µ

r
�

⇤e↵

3
r2 �

(1 + 2�⇤e↵)2

8�⇤e↵

Arctan
�

r/
p

2�
�

r/
p

2�
,

f(r) =
(2� + r2)h

2�(rh)0
, �02 =

(1 + 2�⇤e↵)r2(1� 2�⇤e↵ � 2⇤e↵r2)2

⇤e↵(1� 2�⇤e↵)(2� + r2)3h(r)
,

(21)

with an e↵ective cosmological constant ⇤e↵ = 2�⇤�1
2�(2�⇤+3)

.

3.3.2. Class II: Static Universe From (16) we see that k ⇠ r2 as r ! 1 for

q2� = (1 � 2�⇤) while asymptotically h = 1 and f = r2

2� . A typical example in

this class of metrics is the black hole embedded in an Einstein static universe, which is

obtained with C0 = 0 and, for simplicity, 2�⇤ = �1. The solution reads

h = 1�
µ

r
, f =

⇣

1�
µ

r

⌘

✓

1 +
⌘r2

�

◆

, (22)

whereas the radial part of the scalar field is given by

 0 = ±

q

h

s

µ

r(1 + ⌘
� r

2)
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us start with the de Sitter solution (18) k0 in Class II. Consider the Euclidean division

of the third order polynomial in (16) by
p

k �

p

k0 which is a factor of the third orderAsymptotically flat (no standard kinetic term)
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Let us terminate with asymptotically flat spacetimes where ⇤ = ⌘ = 0. We obtain

a unique solution, for k = constant:

f = h = 1�
µ

r
, (23)

and the metric is isometric to a Schwarzschild metric (BTZ stealth black holes were

found in 3 dimensional spacetimes [57]). However, the scalar field is not trivial and also

regular in the future black hole horizon [35],  0 = ±q
p

µr/(r � µ). The fact that we

take ⇤ = ⌘ = 0 may arguably lead to strong coupling in flat spacetime (µ = 0) for the

scalar field. Note however that the black hole solution that is found is identical to GR,

so strong coupling does not a priori create a phenomenological problem, as local gravity

tests remain indistinguishable relative to GR.

Furthermore, the stealth Schwarzschild metric has also the property X = q2/2

(kinetic term is constant on-shell). Because of this property it is easy to show that the

above stealth solution remains a solution of the beyond Horndeski theory:

L

bH = R + FJ(X)Gµ⌫@µ�@⌫�,

where FJ(X) is a function of X only [21]. It is unknown as yet if other X = contant

solutions can be extended in a similar way to beyond Horndeski theories.

3.4. Stability

As we discussed in the beginning, Horndeski theory avoids Ostrogradski ghosts, because

the field equations remain second order, and new degrees of freedom are not present. It

is however not clear if the existing propagating degrees of freedom — the scalar spin-

0 and the tensor spin-2 — are healthy degrees of freedom for each particular model.

Moreover, there are indications that galileon theory contains a nonlinear ghost instability

(which can be interpreted as a globally unbounded from below Hamiltonian), see e.g. a

discussion in [58]. This however is not an issue as such, since there may exist a local

minimum with a long-lived vacuum state. It is therefore more important to check if

relevant solutions for a particular model at hand form a locally stable vacuum. For

this it is convenient to use a perturbative approach, i.e., one studies whether small

perturbations around a specific solution are stable or not. There may exist di↵erent

types of pathologies, including ghost, gradient or tachyon instability⇤.

The question of stability of black hole solutions in Horndeski theory has not

been fully investigated up to now, although some works have been dedicated to the

topic. In particular, Kobayashi et al. [60, 61] focused on the stability of general

spherically symmetric black holes with static galileon field, using the Regge-Wheeler

formalism [62]. Necessary conditions were established to ensure absence of ghost and

gradient instabilities. Tachyon instability has been left out in this study. Particular

subclasses of Horndeski theory were also considered in [60, 61], including the John term

and the Gauss-Bonnet term coupled to galileon. It was shown that the static John

⇤ On the nonlinear level yet another pathology may manifest itself: formation of caustics, which is
generic for theories with nonlinear G2 as a function of X [59].
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1 Introduction

Scalar-tensor theories present a generic and well-defined classical alternative to Einstein’s

General Relativity. Furthermore, recent observational data point towards the tantalizing

possibility that GR may be modified at large distances. Indeed, in order for FLRW cos-

mology to be in accord with observations one needs to assume the presence of a very tiny

yet non-zero cosmological constant providing the observed acceleration of the Universe. A

tiny cosmological constant is the most economic way to fuel late acceleration, its origin

and magnitude however remains a complete puzzle for theoretical physics. In a combined

effort to attack the large cosmological constant problem in the context of scalar tensor

theories [1] it was realized that the most general classical effective scalar-tensor theory was

that proposed by Horndeski [2]. Horndeski constructed his theory by brute force early on

in the 70’s but the same result was obtained by studying Galileons in a more intuitive

manner in [3]. Either way we are now in full knowledge of the general scalar tensor theory

(with no more than second order derivatives in the equations of motion) but very little is

known about black hole solutions of Horndeski theories [4, 5]. Apart from the fact that

such solutions are technically difficult to find, generically scalar-tensor theories do not ad-

mit black hole solutions where the scalar field is non-trivial and regular. The difficulty

can be summarized in the idea that black holes do not have hair; they are bald objects

once they reach a stationary phase having expelled or eaten up all matter surrounding

them (see e.g. [6]). They are characterized by specific charges, electric, magnetic, angular

momentum, charges which can be measured by an observer at infinity. In this paper we

will use higher order scalar tensor interactions whose relevant complexity will allow us to

evade no hair arguments and construct in a relatively simple manner analytic black hole

solutions where the scalar field will seen to be non trivial and regular.

2 Constructing Galileon black holes

Let us consider part of the Horndeski action,

S =

∫

d4x
√
−g

[

ζR− η (∂φ)2 + βGµν∂µφ∂νφ− 2Λ
]

, (2.1)

– 1 –

⌘(@�)2 ! µ2A2

@µ� ! Aµ

Let us replace the derivative of the scalar by a vector

�Gµ⌫@µ�@⌫� ! �Gµ⌫AµA⌫ Vector “John” term

�1

4
Fµ⌫Fµ⌫ Also add Maxwell term for vector
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↵
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Ansatz

Static metric and vector:

ds

2 = �h(r)dt2 +
dr

2

f(r)
+ r

2
d⌦2

2,

Aµdx
µ = a(r)dt+ �(r)dr

 = 0,±1
Curvature of 

base manifold

Allowing scalar time dependence modifies the no hair argument as now the time component

of the Noether current will generically be non-zero,

J t =
(

ηgtt − βGtt
)

φ̇(t, r), (2.6)

and can potentially source regularity problems for the current. The aim of this paper is

to construct non-trivial black holes that satisfy the above two conditions, i.e. allow for a

regular current and non trivial regular scalar field in a static and spherically symmetric

black hole geometry.

For the ansatz (2.5) the tr component of (2.2) reads,

βφ′

r2

(

rfh′

h
+

(

f − 1−
ηr2

β

)

φ̇− 2rf φ̇′
)

= 0, (2.7)

where dot = ∂/∂t and prime = ∂/∂r. Apart from the obvious φ′ = 0, the expression inside

the parentheses can be integrated to give,

φ(t, r) = ψ(r) + q1(t)e
X(r), (2.8)

where,

X(r) =
1

2

∫

dr

(

1

r
−

1

rf
−
ηr

βf
+

h′

h

)

. (2.9)

and we note that, βGrr − ηgrr = −2βf2X ′/r. With this result at hand, substituting (2.8)

with (2.9) into (2.3), it is easy to show that q1(t) satisfies the ODE,

q̈1(t) = C1q1(t) + C2, (2.10)

with C1 and C2 integration constants. Setting q1(t) = 0 and assuming the trivial config-

uration for the scalar, φ′ = 0, the scalar field equation (2.3) is straightforwardly satisfied,

while the Einstein equations (2.2) are satisfied by the Schwarzschild metric. This is similar

to what happens in most scalar-tensor theories and in particular, in Brans-Dicke theory.

Let us now turn to non-trivial solutions where we note that, setting (2.4) and q1(t) = qt

render the scalar field equation, ∂t
(√

−gJ t
)

+ ∂r (
√
−gJr) = 0, redundant. One can also

think of this Ansatz as switching off the constant associated to primary scalar hair of

φ. Note that the linear dependence of φ(t, r) on time “passes through” the equations of

motion, leaving ODEs rather than the original PDEs due to the shift symmetry of the

Lagrangian.

Under these observations we consider the following subclass of (2.8),

φ(t, r) = q t+ ψ(r) (2.11)

with (2.4) which gives X(r) =const, in (2.9). The same ansatz has been applied for the

study of test galileon fields in various physical setups [11]. Note that, (2.11) and (2.4)

satisfy both the tr component (2.7) and the scalar field equation. Using (2.4) we get,

f =
(β + ηr2)h

β(rh)′
. (2.12)
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Compare with the case of scalar field: 
the same ansatz for the metric, and

@µ� dx
µ = qdt+  

0(r)dr

tt, rr components of the metric equations 

t, r components of the vector equations



Equations of motion

The r-component of the vector equation gives the 
relation of the metric functions, 
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(2.2)

while the modified Proca equation reads,

J

⌫ := rµ(F
µ⌫)� µ

2
A

⌫ + 2�AµG
µ⌫ = 0. (2.3)

Take static and spherically symmetric spacetime

ds

2 = �h(r)dt2 +
dr

2

f(r)
+ r

2
d⌦2

2,, Aµdx
µ = a(r)dt+ �(r)dr. (2.4)

where  corresponds to the curvature of the base manifold  = 0,±1. It is important to

notice the presence of �(r) which is no longer a gauge term in the presence of a massive

vector field.

The equation J

r = 0 implies either that �(r) is trivial or alternatively the metric

constraint,

f(r) =
h(r)

�
µ

2
r

2 + 2�
�

2� (r h)0
. (2.5)

The Etr = 0 equation is then immediately verified and hence the system is mathematically

consistent. The Err = 0 equation gives the �(r) field

�
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r
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h
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h
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2 r
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(2.6)

At the end we are left with the other non trivial component of the Maxwell-Proca equation

J

t = 0 and Ett = 0. These latter two equations are simplified noting the substitution [18]

h(r) = �2M

r

+
1

r

Z
k(r)

µ

2
r

2 + 2�
dr (2.7)

yielding at the end,

"
(µ2

r

2 + 2�)(r a)0p
k(r)

#0

= (1� 4�)a(r)

"
(µ2

r

2 + 2�)p
k(r)

#0

(2.8)
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8

�
µ

2
r

2 + 2�
�2 ⇥

[(ra)0]2 � (1� 4�)(a2r)0
⇤
= 0 (2.9)

These two master equations, when solved with respect to a(r) and k(r), give a full solution

to the field equations (2.1) and (2.3) for the symmetry at hand. This is the task we will

undertake in the rest of the paper. Already in this form we see the relation to the scalar-

tensor system [18] where one has k(r) solving the algebraic equation (2.9) while taking

a(r) = q. All scalar-tensor solutions are however not admitted since we still have to satisfy

– 4 –

From rr-component of the Einstein equations one gets,

where

Zµ⌫ =
1

2
A

2
Rµ⌫ +

1

2
RAµA⌫ � 2A↵

R↵(µA⌫) �
1

2
rµr⌫A

2 +r↵r(µ

�
A⌫)A

↵
�

�1

2
⇤(AµA⌫) +

1

2
gµ⌫

�
G↵�A

↵
A

� +⇤A

2 �r↵r�(A
↵
A

�)
�

(2.2)

while the modified Proca equation reads,

J

⌫ := rµ(F
µ⌫)� µ

2
A

⌫ + 2�AµG
µ⌫ = 0. (2.3)

Take static and spherically symmetric spacetime

ds

2 = �h(r)dt2 +
dr

2

f(r)
+ r

2
d⌦2

2,, Aµdx
µ = a(r)dt+ �(r)dr. (2.4)

where  corresponds to the curvature of the base manifold  = 0,±1. It is important to

notice the presence of �(r) which is no longer a gauge term in the presence of a massive

vector field.

The equation J

r = 0 implies either that �(r) is trivial or alternatively the metric

constraint,

f(r) =
h(r)

�
µ

2
r

2 + 2�
�

2� (r h)0
. (2.5)

The Etr = 0 equation is then immediately verified and hence the system is mathematically

consistent. The Err = 0 equation gives the �(r) field

�

2(r) =
r

h
(µ

2

2 r

2 + �)
�
�a

2
h

0 � 2�aa0h0 � 1
4rh(a

0)2
�
� 1

2(r
2
h

2)0(µ
2

2 + �⇤)
i

h

2(µ
2

2 r

2 + �)2
(2.6)

At the end we are left with the other non trivial component of the Maxwell-Proca equation

J

t = 0 and Ett = 0. These latter two equations are simplified noting the substitution [18]

h(r) = �2M

r

+
1

r

Z
k(r)

µ

2
r

2 + 2�
dr (2.7)

yielding at the end,

"
(µ2

r

2 + 2�)(r a)0p
k(r)

#0

= (1� 4�)a(r)

"
(µ2

r

2 + 2�)p
k(r)

#0

(2.8)

C1k
3/2 � k


2�+ r

2(
µ

2

2
� �⇤)

�
+

1

8

�
µ

2
r

2 + 2�
�2 ⇥

[(ra)0]2 � (1� 4�)(a2r)0
⇤
= 0 (2.9)

These two master equations, when solved with respect to a(r) and k(r), give a full solution

to the field equations (2.1) and (2.3) for the symmetry at hand. This is the task we will

undertake in the rest of the paper. Already in this form we see the relation to the scalar-

tensor system [18] where one has k(r) solving the algebraic equation (2.9) while taking

a(r) = q. All scalar-tensor solutions are however not admitted since we still have to satisfy

– 4 –

2 equations are solved and there are 2 are to solve



Equations of motion

where

Zµ⌫ =
1

2
A

2
Rµ⌫ +

1

2
RAµA⌫ � 2A↵

R↵(µA⌫) �
1

2
rµr⌫A

2 +r↵r(µ

�
A⌫)A

↵
�

�1

2
⇤(AµA⌫) +

1

2
gµ⌫

�
G↵�A

↵
A

� +⇤A

2 �r↵r�(A
↵
A

�)
�

(2.2)

while the modified Proca equation reads,

J

⌫ := rµ(F
µ⌫)� µ

2
A

⌫ + 2�AµG
µ⌫ = 0. (2.3)

Take static and spherically symmetric spacetime

ds

2 = �h(r)dt2 +
dr

2

f(r)
+ r

2
d⌦2

2,, Aµdx
µ = a(r)dt+ �(r)dr. (2.4)

where  corresponds to the curvature of the base manifold  = 0,±1. It is important to

notice the presence of �(r) which is no longer a gauge term in the presence of a massive

vector field.

The equation J

r = 0 implies either that �(r) is trivial or alternatively the metric

constraint,

f(r) =
h(r)

�
µ

2
r

2 + 2�
�

2� (r h)0
. (2.5)

The Etr = 0 equation is then immediately verified and hence the system is mathematically

consistent. The Err = 0 equation gives the �(r) field

�

2(r) =
r

h
(µ

2

2 r

2 + �)
�
�a

2
h

0 � 2�aa0h0 � 1
4rh(a

0)2
�
� 1

2(r
2
h

2)0(µ
2

2 + �⇤)
i

h

2(µ
2

2 r

2 + �)2
(2.6)

At the end we are left with the other non trivial component of the Maxwell-Proca equation

J

t = 0 and Ett = 0. These latter two equations are simplified noting the substitution [18]

h(r) = �2M

r

+
1

r

Z
k(r)

µ

2
r

2 + 2�
dr (2.7)

yielding at the end,

"
(µ2

r

2 + 2�)(r a)0p
k(r)

#0

= (1� 4�)a(r)

"
(µ2

r

2 + 2�)p
k(r)

#0

(2.8)

C1k
3/2 � k


2�+ r

2(
µ

2

2
� �⇤)

�
+

1

8

�
µ

2
r

2 + 2�
�2 ⇥

[(ra)0]2 � (1� 4�)(a2r)0
⇤
= 0 (2.9)

These two master equations, when solved with respect to a(r) and k(r), give a full solution

to the field equations (2.1) and (2.3) for the symmetry at hand. This is the task we will

undertake in the rest of the paper. Already in this form we see the relation to the scalar-

tensor system [18] where one has k(r) solving the algebraic equation (2.9) while taking

a(r) = q. All scalar-tensor solutions are however not admitted since we still have to satisfy

– 4 –

Two master equations:

where

Zµ⌫ =
1

2
A

2
Rµ⌫ +

1

2
RAµA⌫ � 2A↵

R↵(µA⌫) �
1

2
rµr⌫A

2 +r↵r(µ

�
A⌫)A

↵
�

�1

2
⇤(AµA⌫) +

1

2
gµ⌫

�
G↵�A

↵
A

� +⇤A

2 �r↵r�(A
↵
A

�)
�

(2.2)

while the modified Proca equation reads,

J

⌫ := rµ(F
µ⌫)� µ

2
A

⌫ + 2�AµG
µ⌫ = 0. (2.3)

Take static and spherically symmetric spacetime

ds

2 = �h(r)dt2 +
dr

2

f(r)
+ r

2
d⌦2

2,, Aµdx
µ = a(r)dt+ �(r)dr. (2.4)

where  corresponds to the curvature of the base manifold  = 0,±1. It is important to

notice the presence of �(r) which is no longer a gauge term in the presence of a massive

vector field.

The equation J

r = 0 implies either that �(r) is trivial or alternatively the metric

constraint,

f(r) =
h(r)

�
µ

2
r

2 + 2�
�

2� (r h)0
. (2.5)

The Etr = 0 equation is then immediately verified and hence the system is mathematically

consistent. The Err = 0 equation gives the �(r) field

�

2(r) =
r

h
(µ

2

2 r

2 + �)
�
�a

2
h

0 � 2�aa0h0 � 1
4rh(a

0)2
�
� 1

2(r
2
h

2)0(µ
2

2 + �⇤)
i

h

2(µ
2

2 r

2 + �)2
(2.6)

At the end we are left with the other non trivial component of the Maxwell-Proca equation

J

t = 0 and Ett = 0. These latter two equations are simplified noting the substitution [18]

h(r) = �2M

r

+
1

r

Z
k(r)

µ

2
r

2 + 2�
dr (2.7)

yielding at the end,

"
(µ2

r

2 + 2�)(r a)0p
k(r)

#0

= (1� 4�)a(r)

"
(µ2

r

2 + 2�)p
k(r)

#0

(2.8)

C1k
3/2 � k


2�+ r

2(
µ

2

2
� �⇤)

�
+

1

8

�
µ

2
r

2 + 2�
�2 ⇥

[(ra)0]2 � (1� 4�)(a2r)0
⇤
= 0 (2.9)

These two master equations, when solved with respect to a(r) and k(r), give a full solution

to the field equations (2.1) and (2.3) for the symmetry at hand. This is the task we will

undertake in the rest of the paper. Already in this form we see the relation to the scalar-

tensor system [18] where one has k(r) solving the algebraic equation (2.9) while taking

a(r) = q. All scalar-tensor solutions are however not admitted since we still have to satisfy
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C1 is an integration constant

Substitution:

Special case: � = 1/4
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general solution and will have thus a complete picture of the static solutions in this case.
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Note that when C1 = 0 then k is undetermined and we are left with a degenerate system

of one equation with two variables a(r) and k(r) with ⇤ = 2µ2 and Q

2
2 = 4. Taking a

particular a(r) will give some k(r) [23] but these solutions are pathological, as our analysis

shows, for the system is degenerate and undetermined for this case.

Therefore from now on we stick to C1 6= 0 and we see that Q2 the Proca charge

modifies the e↵ective horizon curvature and may give a solid deficit angle just like for a

global monopole [24]. This is something we will have to keep in mind. The k function

which determines the spacetime solution is now of identical form with the static q = 0

solutions as classified in [25] where now the curvature term is replaced by Q

2
2�4. We will

now look at this class of solutions in detail for di↵erent parameters.
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Both of these integrals can be easily found depending on the value of  = 0,±1.
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fixing it such that asymptotically adS:

where we set,

⇤eff = �
h⇤� 2µ2

4C1µ

i2
(3.7)

for the e↵ective cosmological constant and for the e↵ective horizon curvature term. The

solution depends on four integration constants Q,Q2, C1 and M . The latter charge M , is

part of the overall mass, since the arctan term in (3.6) contributes similarly at asymptotic

infinity. The constant C1 is not physical, as it corresponds to the reparametrisation of time,

i.e. the gauge choice. Later we will fix it such that at infinity we recover the standard form

of adS metric. Q is the Coulomb charge which is a stealth parameter for the spacetime

solution. In EM theory this electric charge would give rise to the RN black hole solution.

This stealth feature is a particular feature associated to � = 1/4 as part of the a dependence

in (2.9) drops o↵ from the field equations. The Q2 charge on the other hand is related to

the breaking of gauge symmetry due to the Proca mass term. Secondly, we remark that

the e↵ective cosmological constant is fixed and always negative for µ2
> 0. Finally, we note

the presence of the latter arctan over r term in both h and a. This key term will contribute

a finite number at r = 0 and as a result will influence the regularity of the solution. Indeed

we can easily see that if M = 0,

h(0) = 2

✓
4�Q

2
2

8C1
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, (3.8)

which is always positive or zero. Last but not least we have,
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and we can see that the e↵ective curvature is always equal to unity, f(0) = 1 for M = 0,

making curvature regular at r = 0. Therefore these solutions are always locally adS and

there is no solid deficit angle.

In order to have the standard form of asymptotically adS solutions we have to fix C1

so that,

2

✓
4C1µ

2

⇤� 2µ2

◆2

= 1. (3.10)

This ensures an identical behavior for f and h for large r and it is equivalent to fixing

the gauge. In this case the e↵ective cosmological constant is given by the Proca mass

parameter since,

⇤eff = �2µ2
. (3.11)

The resulting solution is always an asymptotically adS black hole. It has very similar

properties to the spherical or planar adS static black holes depending on the value of Q2.

This is because the latter arctan
r term in (3.6) is everywhere bounded, finite at r = 0 and

decays at infinity as a mass term with a 1/r fallo↵. Again, we emphasize that the usual

Coulomb charge Q does not influence the spacetime metric.
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Let us look into more detail the solution for M = 0 and Q2 6= 2. The solution has no

solid angle deficit as we have f(0) = 1. A solid angle deficit (or excess) would have meant

that spacetime is singular for r = 0 (even if h is regular there). Here, we have the nice

result that the metric is completely regular and hence for M = 0 we have a regular soliton

solution for arbitrary Proca mass µ which has asymptotic adS geometry. We also see here

that the addition of the curvature-vector interaction term, Gµ⌫
AµA⌫ smooths the e↵ects

of the Proca mass term giving a regular solution with adS asymptotics. When we switch

on the mass we have a black hole (with adS asymptotics). This is radically di↵erent from

an electrically charged RN black hole where the M = 0 spacetime is actually singular. It

would seem that in Proca theory and for � = 1/4, when the Proca mass is corrected by

curvature interaction the situation is regularized. The full spacetime solution, with mass

M included and fixed C1 as in (3.10), reads,

h(r) =
2µ2

3
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2 +
2Q2
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A
2

. (3.13)

The Proca charge Q2 is associated to the breaking of U(1) gauge invariance and it can

take arbitrary values. There are however particular values of Q2, for which the solution is

special. In particular the last term in (3.12) drops out, if

Q

2
2µ

2 � 2µ2 � ⇤ = 0. (3.14)

With this choice we get a stealth Schwarzschild-adS solution,

h(r) =
2µ2

3
r

2 + 1� 2M

r

. (3.15)

On the other hand for

2Q2
2µ

2 � 6µ2 � ⇤ = 0

the e↵ective curvature is zero although we have a spherical horizon. For other values of Q2

we have a non stealth solution which for M = 0 becomes a soliton3. Therefore there are

three distinct sub-classes of solutions with adS asymptotic within this class.

Note that although in the case of the soliton M = 0, the mass of the soliton is not

zero. Indeed, one can deduce the soliton mass from the asymptotic behavior at large r

in (3.12). For r ! 1 the last term has the form ⇠ 1/r, therefore one can formally define

the e↵ective mass of the soliton as

Meff = �⇡(Q2
2µ

2 � 2µ2 � ⇤)2

2
p
2µ(⇤� 2µ2)2

. (3.16)

3
Note that Q2 = ±2 must be discarded in the case M = 0, since the solution is singular at r = 0, see

Eq. (3.8)
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for the e↵ective cosmological constant and for the e↵ective horizon curvature term. The
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infinity. The constant C1 is not physical, as it corresponds to the reparametrisation of time,

i.e. the gauge choice. Later we will fix it such that at infinity we recover the standard form

of adS metric. Q is the Coulomb charge which is a stealth parameter for the spacetime

solution. In EM theory this electric charge would give rise to the RN black hole solution.

This stealth feature is a particular feature associated to � = 1/4 as part of the a dependence

in (2.9) drops o↵ from the field equations. The Q2 charge on the other hand is related to

the breaking of gauge symmetry due to the Proca mass term. Secondly, we remark that

the e↵ective cosmological constant is fixed and always negative for µ2
> 0. Finally, we note

the presence of the latter arctan over r term in both h and a. This key term will contribute

a finite number at r = 0 and as a result will influence the regularity of the solution. Indeed
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and we can see that the e↵ective curvature is always equal to unity, f(0) = 1 for M = 0,

making curvature regular at r = 0. Therefore these solutions are always locally adS and

there is no solid deficit angle.

In order to have the standard form of asymptotically adS solutions we have to fix C1

so that,

2

✓
4C1µ
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⇤� 2µ2

◆2

= 1. (3.10)

This ensures an identical behavior for f and h for large r and it is equivalent to fixing

the gauge. In this case the e↵ective cosmological constant is given by the Proca mass

parameter since,

⇤eff = �2µ2
. (3.11)

The resulting solution is always an asymptotically adS black hole. It has very similar

properties to the spherical or planar adS static black holes depending on the value of Q2.

This is because the latter arctan
r term in (3.6) is everywhere bounded, finite at r = 0 and

decays at infinity as a mass term with a 1/r fallo↵. Again, we emphasize that the usual

Coulomb charge Q does not influence the spacetime metric.
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see also Chagoya et al’16
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stealth Schwarzschild soliton

The resulting solution is always an asymptotically adS black hole. It has very similar
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Coulomb charge Q does not influence the spacetime metric.
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that spacetime is singular for r = 0 (even if h is regular there). Here, we have the nice
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The Proca charge Q2 is associated to the breaking of U(1) gauge invariance and it can

take arbitrary values. There are however particular values of Q2, for which the solution is

special. In particular the last term in (3.12) drops out, if
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the e↵ective curvature is zero although we have a spherical horizon. For other values of Q2
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of the Proca mass term giving a regular solution with adS asymptotics. When we switch

on the mass we have a black hole (with adS asymptotics). This is radically di↵erent from

an electrically charged RN black hole where the M = 0 spacetime is actually singular. It

would seem that in Proca theory and for � = 1/4, when the Proca mass is corrected by

curvature interaction the situation is regularized. The full spacetime solution, with mass

M included and fixed C1 as in (3.10), reads,

h(r) =
2µ2

3
r

2 +
2Q2

2µ
2 � 6µ2 � ⇤

⇤� 2µ2
� 2M

r

+
(Q2

2µ
2 � 2µ2 � ⇤)2p

2µ(⇤� 2µ2)2
arctan (

p
2rµ)

r

,

(3.12)

f(r) = h(r)

0

@
r

2 + 1
2µ2

r

2 +
Q2

2�4
2(⇤�2µ2)

1

A
2

. (3.13)

The Proca charge Q2 is associated to the breaking of U(1) gauge invariance and it can

take arbitrary values. There are however particular values of Q2, for which the solution is

special. In particular the last term in (3.12) drops out, if

Q

2
2µ

2 � 2µ2 � ⇤ = 0. (3.14)

With this choice we get a stealth Schwarzschild-adS solution [23],

h(r) =
2µ2

3
r

2 + 1� 2M

r

. (3.15)

On the other hand for

2Q2
2µ

2 � 6µ2 � ⇤ = 0

the e↵ective curvature is zero although we have a spherical horizon. For other values of Q2

we have a non stealth solution which for M = 0 becomes a soliton5. Therefore there are

three distinct sub-classes of solutions with adS asymptotic within this class.

5
Note that Q2 = ±2 must be discarded in the case M = 0, since the solution is singular at r = 0, see

Eq. (3.8)
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The mass of the soliton is not zeroNote that although in the case of the soliton M = 0, the mass of the soliton is not

zero. Indeed, one can deduce the soliton mass from the asymptotic behavior at large r

in (3.12). For r ! 1 the last term has the form ⇠ 1/r, therefore one can formally define

the e↵ective mass of the soliton as

Meff = �⇡(Q2
2µ

2 � 2µ2 � ⇤)2

2
p
2µ(⇤� 2µ2)2

. (3.16)

There are a number of special values for the coupling constants. Choosing ⇤ = 2µ2

will kill the e↵ective cosmological constant ⇤eff = 0. We get,

h(r) = �2M

r

+
p

2µ2 (Q
2
2 � 4)2

(8C1µ)2
arctan (r

p
2µ2)

r

(3.17)

The solution has generically an event horizon. However it also has unusual asymptotics

as h ! 0 while f ⇠ r

4 for r ! +1. Another particular limit is to take µ = 0 and this

solution was found in [21]. We note that in presence of a ⇤�term the solution behaves

asymptotically as a conical geometry [30]

ds

2 ⇠ �r

4
dt

2 + 5dr2 + r

2
d⌦2

.

for large r. For M = 0 however we see that f(0) = 1 and therefore the solution has regular

curvature at r = 0. This agrees with the result of [21]. Asymptotically however space will

have a solid deficit angle removed from the sphere similar to the global monopole solution

[28].

If we additionally set ⇤ = 0, the solution becomes,

h(r) = 1� 2M

r

32C2
1

(4�Q2)2
, f(r) =

32C2
1

(4�Q2)2
h(r),

In order to make it asymptotically flat, the constant C1 is fixed in terms of Q2 as

C

2
1 =

1

32
(4�Q2)

2

and this explains why the asymptotically flat solution reported in [21] has only three

integration constants.

It is easy to see that choosing hyperbolic geometries,  = �1, the arctangent term in

(3.6) will be replaced by a hyperbolic arctangent which will explode exponentially at finite

r. These solutions can be trivially obtained but will have singular asymptotics, and hence

we do not discuss them further. To get an arctangent term and de Sitter asymptotics for

 = �1 one could consider an imaginary Proca mass term, µ2 = �m

2. Although such

a term would be discarded due to instability in usual Proca theory, here, the presence of

higher order terms does not guarantee this intuition. However, a quick analysis in this case

shows that the solution has always negative e↵ective curvature and as a result is always

singular for de Sitter asymptotics.
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Note that although in the case of the soliton M = 0, the mass of the soliton is not

zero. Indeed, one can deduce the soliton mass from the asymptotic behavior at large r

in (3.12). For r ! 1 the last term has the form ⇠ 1/r, therefore one can formally define

the e↵ective mass of the soliton as

Meff = �⇡(Q2
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Note that Q2 = ±2 must be discarded in the case M = 0, since the solution is singular at r = 0, see

Eq. (3.8)
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                     are physical quantitiesM, Q, Q2

3.2 Planar horizon black holes  = 0

Let us suppose now that the horizon’s geometry is locally flat,  = 0,

ds

2 = �h(r)dt2 +
dr

2

f(r)
+ r

2(dx2 + dy

2),

Integrating (3.3) it is straightforward to obtain the electric potential,

a(r) =
Q

r

� Q2

8C1µ
2
r

2

h �
2⇤� 4µ2

�
r

2 �Q

2
2

i
. (3.18)

whereas from (3.4) the metric functions take the form,

h(r) =

✓
2µ2 � ⇤

4C1µ

◆2
r

2

3
+

(⇤� 2µ2)Q2
2

(4C1µ)2
� 2M

r

� Q

4
2

(8C1µ)2r2
(3.19)

f(r) =
128µ4

C

2
1r

4

�
4µ2

r

2 � 2⇤r2 �Q

2
2

�2h(r). (3.20)

Although we have a planar geometry for the horizon surface, the black hole potential is

similar to that of an adS RN geometry, however, with imaginary charge. Additionally, the

e↵ective curvature term is of an undetermined sign fixed by the Lagrangian parameters,

while the e↵ective cosmological is always negative. The imaginary charge term means that

even at the absence of mass M the central singularity will be dressed by an event horizon

since h

0 is positive. This is contrary to the usual RN solution which is singular for small

black holes. The asymptotics are locally adS.

In order to have adS asymptotics as before we must impose,


4C1µ

⇤� 2µ2

�2
=

1

2µ2
(3.21)

e↵ectively fixing C1 and we get the solution,

h(r) =
2Q2

2µ
2

⇤� 2µ2
+ r

2 2µ
2

3
� 2M

r

� (Q2
2µ)

2

2r2(⇤� 2µ2)2
(3.22)

f(r) =
h(r)

1 +
⇣

Q2
2

(2⇤�4µ2)r2

⌘ (3.23)

Again we see that even if M = 0 we have a black hole horizon dressing the singularity

at r = 0. This is due to the Proca charge which now is of the form of an imaginary RN

charge. We can have an e↵ective positive or negative curvature term depending on the

sign of ⇤� 2µ2 but it does not change the properties of the solution. This is because it is

always the imaginary charge that is dominant at smaller r.

4 Solutions for C1 = 0 and arbitrary �.

For the special coupling � = 1
4 , we are able to obtain the general spherical, hyperbolic or

planar, static solution. In order to obtain the general solution for arbitrary � one would
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The case        and spherical 
symmetry

� 6= 1/4

The metric function h(r) (2.7) is now given by,

h(r) = �2M

r

+
1

r

Z
X(r)(µ2

r

2 + 2�)dr (4.2)

On the other hand we set

y =
a

ra

0 . (4.3)

Indeed, in this case, after straightforward calculations, the master equations we have to

solve, (2.8) and (2.9), reduce to,

X

0

2X
=

1 + y � ry

0

ry(1 + 4�y)
, (4.4)

C1
�
µ

2
r

2 + 2�
�
X

3/2 �X


2�+ r

2(
µ

2

2
� �⇤)

�
+

a

2

8y2
�
1 + 8�y + 4�y2

�
= 0. (4.5)

Eqs. (4.3), (4.4) and (4.5) form a closed system of equations on three functions: y, X

and a. Notice that if a is any power of r then y is just a constant given by the power in

question. With this observation one can verify that any constant y cannot yield a solution

to the system except in particular cases like  = 0 (see the Lifshitz section). Finally, if a

is constant then 1/y is exactly zero, and the resulting solution is nothing but the stealth

configuration on the Schwarzschild AdS spacetime [18].

For the moment we have not achieved much from the change of variables, as the field

a does not completely cancel out in the above system of equations; unless C1 = 0. Indeed,

in this latter case, using (4.5) we find X and replace it in (4.4) to get,

dr

r


(1� 4�) +

r

2(µ2 � 2�⇤)

4�+ r

2(µ2 � 2�⇤)
(1 + 4�y)

�
� 4�(1� 4�)ydy

1 + 8�y + 4�y2
= 0. (4.6)

In addition to the vanishing � case4, there are three generic cases given by µ = ⇤ = 0,

µ

2 = 2�⇤ and finally  = 0 for which the above equation is separable. In what follows we

will discuss each of the cases in detail, first the former two and then the latter  = 0. We

can already anticipate the form of f by noting,

f(r) =
h(r)

2�X

while,

X(r) =
�a

2

y

2

y

2 + 2y + 1
4�

4�+ r

2(µ2 � 2�⇤)
(4.7)

4.1 The case  = 1, for µ = ⇤ = 0 or µ

2 = 2�⇤

The assumption µ

2 = 2�⇤ greatly simplifies Eq. (4.6), yielding,
✓

1

4�
+ 2y + y

2

◆
dr

r

= ydy (4.8)

4
Indeed, from Eqs. (4.4-4.5), it is easy to see that pure Proca theory � = 0 with C1 = 0 gives an

unphysical metric. Nevertheless, in the case where C1 6= 0, numerical solutions have been reported in [27].
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Figure 1. Black hole solutions for µ = 0 and a) M = 0 (the left panel); b) for negative M , such
that the e↵ective mass at infinity is negative (the right panel).

It is possible to work out other explicit solutions for n non integer, for example, for

the value of � = 1/3. The details of the integral calculation are presented in Appendix A,

and the result is depicted in Fig. 1. Fixing the gauge such that h(1) = 1, we find the

asymptotic behaviour as follows,

h ' f ' 1�
Meff

r

, r ! 1, (4.20)

where

Meff = M + r0

 
1� log(2�

p
3)

2
p
3

!
. (4.21)

Note that even for M = 0, the event horizon exists, see the left panel of Fig. 1. It

is interesting that choosing negative value for the bare mass M , there is a black hole

solution with negative asymptotic e↵ective mass, Meff < 0, see the right panel of Fig. 1.

The horizon does exist in this case, but the far away observer would measure repulsive

gravitational force. We also would like to stress that the curvature singularity taking place

at y = 0 is always hidden behind the event horizon.

A black hole solution for non-zero µ is shown in Fig. 2. As in the case µ = 0 the

singularity is covered with the event horizon. The e↵ect of nonzero µ is the AdS asymptotic

behaviour at r ! 1.

4.2 Lifshitz black holes: Topological  = 0 case with C1 = 0

We have already found analytical solutions with a planar base manifold  = 0 corresponding

to asymptotically AdS black holes in the 4� = 1 case. Here, for C1 = 0, the equation (4.6)

becomes separable yielding

[1� 2� + 2�y]
dr

r

=
(1� 4�)ydy
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4� + 2y + y

2
i
. (4.22)

Unlike in the previous subsection here, 1� 2�+2�y = 0 yields constant y solutions. They

in fact correspond to Lifshitz spacetimes which we will turn to now.
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where the Lifshitz exponent is given by

z =
2�

2� � 1
. (4.25)

On the other hand the metric constraint (2.5) with  = 0 imposes a constraint on µ,

µ

2 = 2�(2z + 1). (4.26)

The full metric then takes the form (4.23) with z given by (4.25):

ds

2 = �r

2z

✓
1� 2M

r

2z+1

◆
dt

2 +
dr

2

r

2
�
1� 2M

r2z+1

� + r

2(dx21 + dx

2
2), (4.27)

The Proca field reads then,

a(r) = ±r

z

z

s
2(µ2 � 2�⇤)

(4� � 1) (3� � 1)
, (4.28)

with z and µ given by (4.25) and (4.26) correspondingly. Note that the mass term in the

Lifshitz metric (4.23) will decay only for � 2]�1,

1
6 [[]

1
2 ,1[ excluding the option � = 1/4.

In the general case where y is not constant we have to proceed as we did in the last

section. Here we take for simplicity �

2
> 1/2. We start by resolving (4.22) while coordinate

transforming y = 1/b� 1 + 2�2 thus obtaining in turn,

r(b)

r0
= (1 + �(2� � 1)b)

��1
2(2��1) (1 + �(2� + 1)b)

�+1
2(2�+1)

, (4.29)

Note that we have chosen the coordinate b so that it has the same asymptotic behavior as

r for large r. Similarily,

a(b)

a0
= (1 + �(2� � 1)b)

1
2(2��1) (1 + �(2� + 1)b)

�1
2(2�+1)

, , (4.30)

In order to obtain the metric we need to coordinate transform to b > 0 coordinates,

h(b) = � 2M

r(b)
+

r0a
2
0µ

2(4� � 1)

4(µ2 � 2�⇤)r(b)
I3 (4.31)

where

I3 =

Z
db

(1 + �(2� � 1)b)
�+1

2(2��1) (1 + �(2� + 1)b)
��1

2(2�+1)

1 + (2�2 � 1)b
(4.32)

The solution asymptotes the Lifshitz solution (4.27) for large b, provided that we fix µ as

in (4.26) and the integration constants r0 and a0 in the following way,

a0

r

z
0

=
1

z

s
2(µ2 � 2�⇤)

(4� � 1) (3� � 1)

✓
2� + 1
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◆ �
2(2�2�1)

. (4.33)

In general the integration can be performed numerically.
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