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Planck number grading

PI(h) = 1 J Pl(z) = 0 ]

0 if O actsinside A

—1 if O actsoutside A

Super Additivity Triangular form

PI(FG) > PI(F)+ PI(G) PI(A) > —2
PI([F,G]) > PI(F)+PI(G)+1
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Higher-Order A Operator, triangular form

oo n+42 n Ar..A P
h An,m = An?lm "'(Z) OA, - OA
a= 33 (%) tu !

O ¥ % %
% % % %
N ¥ % % % %
W[ % % % % % *

-2 -1

A, original standard 2nd-order BV op.
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Example: (Oversimplified) Point particle in curved space

Op. Formalism

i~
<Xf|exp{—hHAt} |X,'> = <Xf,tf‘|X,',t,'>

Path Int. Formalism

~ x(tr)=x¢ [ [t
dx| |dp] exp {/ dt(p x4 — H. }
[ edelen ] [ (o - Ho)

(ti)=xi
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Hamiltonian: Point particle in curved space

Operator DeWitt (1957)
~ 2
=% b, -B )+ om)
Op Beltrami  Scalar

Laplacian Curvature

9/33



A Operator

Motivation

BV Path Int./Partition Fct. in W-X Formalism
Transposed Operator

Original 2nd-Order BV

Higher-Order BV Formalism

W-X Formalism

Path Int./Partition Fct. Fields & Antifields

1 A o x
Zx = /d,u v > 2" = {¢% ¢a}
1. Path Int. Measure Lagr. Mult. for Gauge-Fixing
du = pldz][d)] A”

XEe%X (ATX) =0 PI(X) > 0 10/33
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Transposed Operator (Int. by parts)

Affine Leibniz rule

OA(fg) = (04f)g — (1) f(0ag)

Transposed A operator also nilpotent

(AT =0
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13/33



A Operator

Motivation

BV Path Int./Partition Fct. in W-X Formalism
Transposed Operator

Original 2nd-Order BV

Higher-Order BV Formalism

Original 2nd-Order BV (1981)

1o}
Zy = /[dczslexp{ W(g,¢* = 1‘;})

QME

(Aexp{iiLW}) =0 & %(W, W) = ih(AW)

A
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Finite Deformation of Solution to QME

X — x' = (e[AT""]x)

— x4+ ([AT, w]x) + % <[AT, v[AT, w]x) ¥

(ATx) =0 — (ATY) =0 J

16/33



Independence of Gauge-Fixing
Homotopy Operators & Formulas
Independence of Gauge-Fixing
Conclusions
Classical 2nd-order case
The Odd Scalar v

p
References

Independence of Gauge-Fixing

Infinitesimal Deformation of Solution to QME

No AT-cohomology in pertinent sector
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Independence of Gauge-Fixing: Int. by parts

Int. by parts Batalin, Damgaard & KB (1996)

0Z = ZX+6X_ZX = /duW(SX

= /d,u w (ATWx) = /d,u (Aw) (Wx) = 0

Can we construct proof using change of int. var. instead?
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LA

Homotopy operator h (A)

A operator Anti-normal order

17,A
——[z2%A,] for m>1,

0 for m=0.

~ Extended by linearity
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Bilinear Homotopy Operator BA(f, A)

Independence of Gauge-Fixing

— F h (A4 (F9R) h A (A
=0 : n=1

«T+T HCBSA
+(f 0gdc) h h h (A)1+...

N~

n=2
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Bilinear Homotopy Formula

(-1 (95 BA(F.2)) = (-1)™(aTF) - f(A1) |
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Infinitesimal change of Int. Variables

1
6z = —BA(Ux, A w)

172,4

WV infinitesimal & Grassmann-odd op.
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Divergence

div, oz — CONG ow sty = VA GT paw
Wowd0Z = = (8ApXWZ)__W(8 A(Wx, A w))

_ 1 (Ux) (Aw)+w(ATWx) p = —
wx \2,0./ bs
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Independence of Gauge-Fixing

0 = [1dN[dz)olz) wie) xiz) ~ [laAI[ezlple] wicl (e

= /[d)\][dz] (—1)A(5Apxw 6z = /du wx div 0z

= /d,uW5X = Zx,sx —Zx = 0Z
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Conclusions

@ The formal higher-order BV path int/partition fct Z, does
not depend on the gauge-fixing condition X.

@ Proof either via int. by parts or change of int. variables.

@ It is possible to generalize to BRST /anti-BRST
Sp(2)-symmetric theories.

@ Recently, finite BRST transformations have been considered
by Batalin, Lavrov, Tyutin & KB.
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Classical 2nd-order case (from now on)

A Operator

Odd Odd Odd
Lapla- vector scalar
cian field curvature

Transposed

AT = A, —V+v
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Infinitesimal Change of Int. Var.

2627 = é@/} (O'WZA — O'XZA) = (¢,2A)

1 infinitesimal & Grassmann-odd fct.
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Terms built from E and p

VO \;ﬁ(Alx/ﬁ)
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Terms built from E and p

S

©) .= A/p
14 .
P «¢/25( l‘v/gi)
_E —
0 or
1 I € AB €
v = (—1)Fa TAE —ZB)(—l) B
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Odd Scalar in Antisymplectic Geometry (KB 2006)

1
0 - (A
14 o
1) . (_l)aA aZ EAB Z (a_r )( 1)53
v 82*‘_} 0z8
V(2) = ( 1) (8 AEBC)(an(ZB7ZA))
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Terms built from E and p
V;(;O) = —(A1Vp)

O s O
v = (—1)%a 8ZAE BazB)( 1)°s
V(2) o ( 1) ( )(ZC7(ZB72A))

%

_ (_l)aAaD(ieEAB)E (ECD8 )
a aZD B aZA 31/33
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Odd scalar curvature

@ v, is constructed from antisymplectic structure EAB and p.

p
e v, transforms as a scalar.
e v, =0 can be viewed as a compatibility condition between
EAB and p.
°v,= —g is an odd scalar curvature for any tangent space
connection, that is

@ torsionfree,
@ antisymplectic,
@ compatible with p.
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