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MOTIVATIONS:

A TALE ABOUT TRANSFER PROPERTIES OF INVISCID CONSERVED QUANTITIES, KINETIC
ENERGY, HELICITY ENSTROPHY, MAGNETIC HELICITY ETC...

Ql: HOW TO PREDICT THE DIRECTION OF THE TRANSFER (FORWARD/BACKWARD) AND ITS
ROBUSTNESS UNDER EXTERNAL PERTURBATION (FORCING/BOUNDARY CONDITIONS)?

Q2: HOW MUCH THE FLUCTUATIONS AROUND THE MEAN TRANSFER ARE INTENSE AND
SELF-SIMILAR (INTERMITTENCY AND ANOMALOUS SCALING) ?

AS A MATTER OF FACT, FOR 3D NAVIER STOKES EQUATIONS, WE DO NOT KNOW HOW TO
PREDICT NEITHER THE SIGN OF THE MEAN ENERGY TRANSFER NOR THE INTENSITY OF

THE FLUCTUATIONS AROUND IT.

ENERGY (2D/3D)/MAGNETIC HELICITY(3D) ENERGY (3D)/ENSTROPHY(2D)



EXPLORING THE ROLE OF
MIRROR SIMMETRY

- ROLE OF KINETIC HELICITY IN THE REVERSAL OF THE MEAN ENERGY FLUX IN 3D NAVIER-STOKES
(FORWARD/BACKWARD)

- IMPLICATION FOR THE SMALL-SCALES REGULARITY OF THE NAVIER-STOKES SOLUTIONS
- EMPIRICAL OBSERVATION ON ROTATING TURBULENCE
- IMPLICATION FOR SMALL SCALE INTERMITTENCY AND DEVIATION FROM KOLMOGOROV 1941 SCALING

- ROLE OF MAGENTIC HELICITY IN THE FORMATION OF LARGE AND SMALL SCALES DYNAMO IN
MAGNETOHYDRODYNAMICS

v+ (v-0)v=—0P + vAv+F
0-v=20
+ Boundary Conditions



Study of High—Reynolds
Number Isotropic Turbulence
by Direct Numerical
Simulation

Takashi Ishihara,' Toshiyuki Gotoh,?
and Yukio Kaneda'

Figure 4

3D HOMOGENEOUS AND ISOTROPIC TURBULENCE
FLUCTUATIONS: SMALL-SCALES INTERMITTENCY
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Snapshot of the intensity distributions of (4) the energy-dissipation rate # = £/(2v) and (§) the enstrophy Q =
DNS-ES at R; = 675 in arbitrary units. 0.0001
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MULTIFRACTAL PREDICTION FOR ACCELERATION
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INVERSE ENERGY CASCADE
UNDER ROTATION

3D->2D

HELICITY ENHANCEMENTS
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Dual non-Kolmogorov cascades in a von Karman flow

E. HERBERT!, F. DaviauD!, B. DUBRULLE!, S. NAZARENKO? and A. Naso?
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FIG. 1: Summary of the two different possibilities for dual
helicity and energy cascades as a function of the wavenumber
k in a Beltrami flow. Left : local case; right : non-local case.
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Turbulence in More than Two and Less than Three Dimensions
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Q: CAN WE DISSECT 3D NS EQUATIONS TO EXTRACT
INTERESTING INFORMATION FROM ITS ELEMENTARY
CONSTITUENTS?

O v +4 NP4 vAV+F
0-v=>0
+ Boundary Conditions
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The Beltrami Spectrum
for Incompressible Fluid Flows

The nature of triad interactions in homogeneous turbulence
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uk(k,t) (s,==1)

d |
— (k) kK= 2 2 g g(s,p—5,q)
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X[u’r(p)u’a(q)]™. (15)

Eight different types of interaction between three modes
u'k(K), u’r(p), and u’e¢(q) with |K|<|p|<|q| are allowed
according to the wvalue of the triplet (s;,s »Sg)
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HELICAL TRIADIC INTERACTION IN THE NAVIER_STOKES EQS




TRIADIC INTERACTION IN DECIMATED NAVIER_STOKES EQS

{E = [ut (k)% + [u ) %
H =Y k(jut ()] £ [uXk)).




‘ HOMOCHIRAL 3D NAVIER STOKES EQS. \

h* @ h* +ooN +
pE = | v (x) =) Pru(k);
h=* - h* k
\__/

w(k) =ut(k)h™ (k) + u_%_(k)

LOCAL BELTRAMIZATION (IN FOURIER)

Ovt + PTBvt, vt =vAvt +f7
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HOMOCHIRAL 3D NAVIER STOKES EQS.

E =Y lut (k) + [uXk)[*
H =3, k(jut(k)]* =N (k)?).
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HOMOCHIRAL 3D NAVIER STOKES EQS.

ESISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THE HELICAL-DECIMATED NSE

vt =P (—vT - Vot —VpT) +vAvt + f+
V.ot =0

HILBERT-NORM COINCIDES WITH THE SIGN-DEFINITE HELICTY

19|z =) klg(k
k

CONSERVATION HELICITY: NEW APRIORI BOUND ON THE VELOCITY
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Inverse cascade at 2 =50

Inverse flux is brought mainly by +++ and --- triads.

10° , . 0.1

1 Inverse Cascade
10 \ 0.05 |
102 |
10-3 Q=50 |

. -0.05 |
10 | Energy Input 1

5 -0.1 ¢
107 |

-6 - -
0 | B (k) | -0.15
10”7 0.2

1

(+H++) (k) = (u+

10

100

WITH G. SAHOO AND P. PERLEKAR (unpublished)

Htotal

TARAF 1L 5=




TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS
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TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS

u®(x) = Du(x) = Z 'R Dy, (4)
k

where D§ = (1—78)+v2 Py and vg = 1 with probability
a or v, = 0 with probability 1 — «. The a-decimated
Navier-Stokes equations («a-NSE) are

Oyu® = D [—u® - Vu® — Vp%| + vAu®, (5)
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TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS
E(k) = E* (k) + E (k)
H(k) = k(E™ (k) — E™ (k))
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RECOVERY OF MIRROR SYMMETRY
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TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER_STOKES EQS
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TRIADIC INTERACTION IN REWEIGTHED NAVIER_STOKES EQS




TRIADIC INTERACTION IN REWEIGHTED NAVIER_STOKES EQS
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CONCLUSIONS

ROLE OF HELICITY IN THE FORWARD/BACKWARD 3D ENERGY TRANSFER (FOURIER)
ROLE OF HOMO-CHIRAL TRIADS VISIBLE ALSO IN ROTATING TURBULENCE

EXISTENCE OF A SHARP PHASE-TRANSITION BAKWARD/FORWARD IF SOME
NON-LINEAR INTERACTION ARE REWEIGHTED

HETERO-CHIRAL TRIADS PLAY A SINGULAR ROLE FOR INTERMITTENCY IF PARTICIPATING WITH THE CORRECT PREFACTOR
IMPLICATION FOR REGULARITY OF SOLUTIONS
IMPLICATION FOR SMALL AND LARGE SCALE DYNAMO

IMPLICATION FOR REAL-SPACE INTERMITTENCY AND ENERGY
BACKSCATTER?
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Helicity and singular structures in fluid dynami
H. Keith Moffatt' local beltrami flows

Department of Applied Mathematics and Theoretical Physics, University of Ca

This contribution is part of the special series of Inaugural Articles by members
Contributed by H. Keith Moffatt, January 14, 2014 (sent for review December

Helicity is, like energy, a quadratic invariant of the Euler equations of
ideal fluid flow, although, unlike energy, it is not sign definite. In
physical terms, it represents the degree of linkage of the vortex lines
of a flow, conserved when conditions are such that these vortex lines
are frozen in the fluid. Some basic properties of helicity are reviewed,
with particular reference to (/) its crucial role in the dynamo excita-
tion of magnetic fields in cosmic systems; (ii) its bearing on the exis-
tence of Euler flows of arbitrarily complex streamline topology; (iii)
the constraining role of the analogous magnetic helicity in the de-
termination of stable knotted minimum-energy magnetostatic struc-
tures; and (iv) its role in depleting nonlinearity in the Navier-Stokes
equations, with implications for the coherent structures and energy
cascade of turbulence. In a final section, some singular phenomena in
low Revnolds number flows are brieflv described. Vortex
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Helicity conservation by flow across scales in
reconnecting vortex links and knots

Martin W. Scheeler®'?, Dustin Kleckner®'?, Davide Proment®, Gordon L. Kindlmann®, and William T. M.
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The conjecture that helicity (or knottedness) is a fundamental
conserved quantity has a rich history in fluid mechanics, but the
nature of this conservation in the presence of dissipation has
proven difficult to resolve. Making use of recent advances, we
create vortex knots and links in viscous fluids and simulated
superfluids and track their geometry through topology-changing
reconnections. We find that the reassociation of vortex lines
through a reconnection enables the transfer of helicity from
links and knots to helical coils. This process is remarkably efficient,
owing to the antiparallel orientation spontaneously adopted by
the reconnecting vortices. Using a new method for quantifying the
spatial helicity spectrum, we find that the reconnection process
can be viewed as transferring helicity between scales, rather than
dissipating it. We also infer the presence of geometric deforma-
tions that convert helical coils into even smaller scale twist, where
it may ultimately be dissipated. Our results suggest that helicity
conservation plays an important role in fluids and related fields,
even in the presence of dissipation.




WHERE DOES ENERGY GO?
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On the Global Regularity of a Helical-Decimated
=i Version of the 3D Navier-Stokes Equations

Authors Authors and affiliations

Luca Biferale [~], Edriss S. Titi

We study the global regularity, for all time and all initial data in H2, of a recently introduced
decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based
on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace
where helicity (the L?-scalar product of velocity and vorticity) is sign-definite. The presence of a
second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent
to the H*2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-
periodic solutions, together with continuity with respect to the initial conditions, for this
decimated 3D model. This is achieved thanks to the establishment of two new estimates, for
this 3D model, which show that the H'/2 and the time average of the square of the H3/2 norms
of the velocity field remain finite. Such two additional bounds are known, in the spirit of the
work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964; Rend. Semin. Mat.
Univ. Padova 32:243-260, 1962), to be sufficient for showing well-posedness for the 3D NS
equations. Furthermore, they are directly linked to the helicity evolution for the dNS model,

and therefore with a clear physical meaning and consequences.



TRIADIC INTERACTION IN REWEIGTHED NAVIER_STOKES EQS
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L arge-scale magnetic fields in MHD

©TRACE operation team, %
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Btu:—%VP—(u-V)u—l—%(Vxb)><b+uAu

Otb=(b-V)u—(u-V)b+nAb
V-u=0 and V-b=0

Hn(t) = / dx a(x,t)- b(x,t) — inverse cascade
v
H(t) = | dx u(x,t)-w(x,t) = dynamo action (e.g. a-effect)
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Helical Fourier decomposition
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Stability analysis
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TRIAD-BY-TRAID BACKWARD -> HELICAL CONDENSATE ON THE MINORITY MODES
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Helicity is, like energy, a quadratic invariant of the Euler equations of
ideal fluid flow, although, unlike energy, it is not sign definite. In
physical terms, it represents the degree of linkage of the vortex lines
of a flow, conserved when conditions are such that these vortex lines
are frozen in the fluid. Some basic properties of helicity are reviewed,
with particular reference to (/) its crucial role in the dynamo excita-
tion of magnetic fields in cosmic systems; (i¥) its bearing on the exis-
tence of Euler flows of arbitrarily complex streamline topology; (/i)
the constraining role of the analogous magnetic helicity in the de-
termination of stable knotted minimum-energy magnetostatic struc-
tures; and (iv) its role in depleting nonlinearity in the Navier-Stokes
equations, with implications for the coherent structures and energy
cascade of turbulence. In a final section, some singular phenomena in
low Revnolds number flows are brieflv described.
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