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• consider any 2D QFT in a 
rigid            (=Poincare disc)AdS2

•calculate generating functional  
for boundary conformal correlators

• introduce dynamical (Jackiw—Teitelboim) gravity
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Figure 2: In (a) we see the full AdS
2

space. In (b) we cut it o↵ at the location of a
boundary curve. In (c) we choose a more general boundary curve. The full geometry of
the cutout space does depend on the choice of the boundary curve. On the other hand,
the geometry of this cutout region remains the same if we displace it or rotate it by an
SL(2) transformation of the original AdS

2

space.

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of
di↵erent interior geometries is given by the set of all functions t(u) up to the above SL(2)
transformations. (Or modded out by these SL(2) transformations (2.5)).

It is worth noting that we can also look at the asymptotic symmetries of AdS
2

. They
are generated by reparametrizations of the asymptotic form

⇣t = "(t), ⇣z = z"0(t) (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u
to t(u) = u+ "(u).

If we insert these geometries into the action (2.3) the Gauss-Bonnet theorem implies
that we always get the same action, namely the extremal entropy. Thus we have a set of
exact zero modes parametrized by t(u) (up to the SL(2) identification (2.5)).

Notice that, near the boundary, the geometries are indistinguishable, we need to go
through the bulk in order to distinguish them. In fact, this is the realization of the full
reparametrization symmetry that we expect in this problem. In other words, we expect
that SL(2) is enhanced to a full Virasoro like symmetry, which in this case, are just the
reparametrization symmetries. However, the reparametrization symmetry is spontaneously
broken by AdS

2

. It is broken to SL(2, R). The zero modes are characterized by the
functions t(u). These can be viewed as Goldstone bosons. Except that here we consider
them in the Euclidean problem. We can call these zero modes “boundary gravitons”.
They are similar to the ones that appear in three dimensions. An important di↵erence
with the three dimensional case is that, here, these modes have precisely zero action in the
confromal limit, there is no local conformal invariant action we can write down for them.
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Dressed generating functional

Schwarzian boundary quantum mechanics
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Main takeaway message:

IAF = T T̄ = lim
L!1

NAdS2

Solves (flat space) Jackiw —Teitelboim gravity
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IAF = T T̄
•Obvious to anybody who knows both constructions  
•True for CFT’s and integrable QFT’s, where one can 

calculate finite volume spectrum with TBA 
•First and simplest example: one starts with 24 free 

massless bosons and ends up getting a critical bosonic 
string
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SD, Flauger, Gorbenko, 1205.6805

•Provides reason d’être for IAF and rigorous definition 
for T T̄

•Should be possible to derive     ’s from the JT partition 
function in a generic case (work in progress)
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T T̄ from linearized JT gravity
Minkowski vacuum
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Quadratic action

flip in the dressing phase,
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or, equivalently, it can be written as the operator product
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As discussed in [2], as a consequence of the momentum conservation, (2.14) is equivalent

to (1.1) provided the relation (1.8) holds. Note that in the form (2.14) the unitarity of

the dressed S-matrix is manifest, while the initial expression (1.1) is explicitly crossing

symmetric.

2.2 Perturbative Scattering and the T T̄

The presented derivation of the S-matrix proceeds in a somewhat unconventional way. It is

instructive to see how the gravitational scattering arises perturbatively in a more familiar

language. Namely, let us consider the quadratic action for small metric h↵� and dilaton '

perturbations around the vacuum (2). It takes the following form
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Metric and dilaton do not contain any propagating degrees of freedom. Hence, we can

exclude them using their field equations and this will lead to a local interaction for matter
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Solution

fields. The field equations following from the quadratic action (2.15) are
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A solution to these equations is not unique due to gauge ambiguity. In particular, one can fix

the conformal gauge h
++

= h�� = 0, which also implies h
+� = 0 and brings us to the same

situation as before in section 2.1, where the scattering arises from introducing dynamical

coordinates. Instead, here we are looking for a analogue of the static gauge for the Nambu–

Goto string, where the worldsheet scattering comes out directly. The metric solution, which

accomplishes this, is

h↵� = � 2

⇤
(T↵� � ⌘↵�T

�
� ) . (2.20)

To see that this provides a solution, note that as a consequence of the energy-momentum

conservation a metric of this form satisfies
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which implies also the flatness condition (2.16). Furthermore, after plugging (2.20) in (2.17),

(2.18), (2.19) one arrives at the following set of equations for the dilaton,
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It is straightforward to check that (2.22), (2.23) satisfy the integrability condition
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A notable property of this solution is that both metric and dilaton remain unperturbed

away from the sources. As a result this description is indeed very similar to the static gauge
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Plug back into action

choice in the Nambu–Goto case. In particular, away from the sources �±-coordinates used

here coincide with the physical coordinates introduced in sec 2.1. By plugging (2.20) back

into the action (2.15) we find that (at the leading order in 1/⇤) the e↵ect of the JT gravity

is equivalent to deforming the matter action by

ST ¯T = � 1

2⇤

Z
(T↵�T

↵� � T �2
� ) , (2.24)

which is nothing but the T T̄ deformation.

3 Gravitational Dressing as a Flat Limit of NAdS2 holog-

raphy

In this section we establish a link between the NAdS
2

holography for the JT gravity and

the gravitational dressing of 2D S-matrices. We start with a more detailed version of the

argument stated in the Introduction that says that the e↵ect of the flat space JT gravity on

the S-matrix can be expressed as a functional integral similar to (1.2) and present a more

careful treatment of this formula. In section 3.2 we turn to the holographic formulation of

the JT gravity in AdS
2

given by the Schwarzian dressing (1.5). At this point it is natural

to expect that if one is able to take a flat space limit of boundary correlators generated

by ZJT the corresponding bulk S-matrix will be the gravitational dressing of the S-matrix

obtained from Z. There are several obstacles that complicate the flat space limit, for example

conformal symmetry is broken in ZJT . However, with some guidance from the flat-space

”holographic” derivation of section 3.1, we present a procedure that indeed leads to the

anticipated result.

3.1 Holographic Derivation of Gravitational Dressing

S-matrix is a natural asymptotic observable in a flat space. However, so far there is no well-

established procedure to express it purely in terms of a boundary theory. One complication

is that the Minkowski space, unlike AdS, doesn’t have a natural boundary where one can

formulate a boundary problem for on-shell particles. In order to proceed we will consider

our theory placed in a finite region of the Minkowski space. The boundary of this region can

be roughly thought of as the position of an observer’s lab which prepares initial states and

measures final ones. To define the S-matrix elements we first calculate boundary Greens

functions, then take the boundary to infinity and apply the LSZ formula.
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Heuristics of  IAF=JT
S =

Z p
�g (�R� ⇤+ Lm(g, ))

JT dilaton is a Lagrange multiplier, which forces 
metric to be flat, hence we can write

following partial di↵erential equation

@tEt(n, P,R) = Et(n, P,R)@REt(n, PR) +
P (R)2

R
. (1.6)

Here t is a parameter of the deformation, so that the undeformed spectrum serves as the

initial condition at t = 0. Note that the unusual property of this deformation is that T T̄ is

an irrelevant operator, so the RG trajectory shoots from IR into UV.

As we already said, the principal claim of the current paper is that the gravitational

dressing and the T T̄ deformation are two di↵erent descriptions of the same RG flow, which

can be described also by coupling the undeformed theory to the flat space (i.e., L ! 1) JT

gravity. The parameters of the three constructions are identified as

`�2 = �⇤

2
= t .

Let us explain why this result is natural to expect. The similarity between the flat space

gravitational dressing and the Schwarzian dressing in NAdS
2

holography is manifest. In both

cases all the e↵ects of gravity can be described by introducing a coupling between the non-

gravitational asymptotic observables—be it S-matrix elements or boundary correlators—

with a boundary quantum mechanics. Furthermore, it is easy to see that the boundary

Chern–Simons theory arises naturally in the JT gravity. Indeed, in the bulk the JT dilaton

� plays the role of a Lagrange multiplies, ensuring that the metric is flat (at L = 1). Hence,

at L = 1 the path integral describing a matter system coupled to the JT gravity can be

written schematically as

Z =

Z
DXaD ei

R
d2�

p
�g

f

(�⇤+L
m

( ,g
f

)) , (1.7)

where Lm is the matter Lagrangian and gf is a general flat metric, which can be presented

as

gf↵� = @↵X
a@�X

b�ab .

Hence, the vacuum energy term turns into the action of a topological theory; when integrated

by parts the latter is exactly the boundary Chern–Simons quantum mechanics (1.3) with

`�2 = �⇤

2
. (1.8)

Of course, this heuristic argument fells short of the derivation that the flat space JT gravity

results in the gravitationally dressed amplitudes. In section 2 we will present an actual proof

that this is the case. We will show how the dressing phase shift arises from the JT action
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Proof of  IAF=JT
Minkowski vacuum
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Appears inhomogeneous. Why do we expect Poincare 
invariant S-matrix in the first place?

Conformal gauge

degrees of freedom—the JT dilaton plays the role of a Lagrange multiplier, which kills the

only candidate propagating mode of the metric. As we will see now the only role of the JT

gravity is to provide a dynamical system of coordinates.

The first indication for this comes from the following consideration. Why does one

expect to find a Poincaré invariant S-matrix for the scattering around the vacuum (2.1),

(2.2), given that the dilaton field in this vacuum has non-trivial space-time dependence? To

see the answer it is convenient to fix the conformal gauge,

g↵� = e2⌦⌘↵� .

Then the JT action reduces to

SJT =

Z
d�+d�� �

4�@
+

@�⌦� ⇤e2⌦
�
.

This action is invariant under arbitrary holomorphic and antiholomorphic shifts of �,

� ! �+ f(�+) + g(��) .

We see now that the vacuum (2.1), (2.2) is invariant under the combination of the coordinate

translations

�± ! �± + a±

with the Galilean shifts of the dilaton

� ! �� ⇤

2
(a+�� + a��+) .

Note that, at least for the purpose of the scattering problem, this prescription is well-defined,

because the conformal gauge fixing on a plane does not leave any residual gauge freedom if

one also imposes g↵� ! ⌘↵� at infinity. The only conformal transformations preserving this

property are those from the Poincaré subgroup. The latter is a physical global (rather than

gauge) symmetry of the scattering2.

This situation is analogous to the worldsheet scattering for the critical string. There one

starts with a long string background

X0 = �0 , X1 = �1 ,

which is invariant under the combined shift of the worldsheet and target space coordinates.

2
It will be interesting to study what is the analogue of the BMS symmetry in this case.
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We see now that the vacuum (2.1), (2.2) is invariant under the combination of the coordinate
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2
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This situation is analogous to the worldsheet scattering for the critical string. There one

starts with a long string background

X0 = �0 , X1 = �1 ,

which is invariant under the combined shift of the worldsheet and target space coordinates.
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It will be interesting to study what is the analogue of the BMS symmetry in this case.
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which is the symmetry of the vacuum as well



Then, using X0 and X1 as physical coordinates, one obtains the worldsheet S-matrix de-

scribed by the dressing formula (1.1), applied to a system of 24 massless free bosons repre-

senting the transverse string coordinates [1]. In the Polyakov gauge this setup is especially

similar to the one encountered in the JT gravity. There, in addition to transverse fields

X i, representing propagating physical modes, one finds an additional topological sector con-

sisting of the Polyakov metric and X0,1, whose only role is to provide a dynamical set of

coordinates. A detailed derivation of the worldsheet S-matrix in the Polyakov formalism3 is

presented in [16]. Let us see what happens if one treats the JT gravity in a similar way.

In the conformal gauge the JT field equations for the metric and the dilaton take the

following form

@2

+

� = �1

2
T
++

(2.3)

@2

�� = �1

2
T�� (2.4)

@
+

@�� =
1

2
(⇤+ T

+�) (2.5)

@
+

@�⌦ = 0 , (2.6)

so that with the above boundary conditions for the metric one finds ⌦ = 0 everywhere. Note

that our energy-momentum tensor is defined as

T↵� = � 2p�g

�S

�g↵�
.

One treats the system (2.3)-(2.6) as a set of operator equations. The matter dynamics in �±

coordinates remains exactly the same as in the absence of gravity. Just as in the Polyakov

case, dressing arises as a consequence of a coordinate change. Namely, we introduce new

dynamical coordinates defined as

X± = 2
@⌥�
⇤

⌘ �± + Y ± ,

where at the last step we separated the vacuum contribution. The motivation for this choice

is that, just as the target space coordinates of a string, X± shift by a constant under the

physical Poincaré translations and reduce to �± at the vacuum.

3
Following the idea by Juan Maldacena.
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Dynamical coordinates of JT gravity

Field equations
Then eqs. (2.3),(2.4),(2.5) turn into

@
+

Y � = �T
++

⇤
, (2.7)

@�Y + = �T��
⇤

, (2.8)

@
+

Y + = @�Y � =
T
+�
⇤

. (2.9)

Here eqs. (2.9) ensure that given Y ± one can always find the corresponding dilaton field �.

As a consequence of the energy-momentum conservation the system (2.7), (2.8), (2.9) always

has a solution. This solution is uniquely defined up to a constant shift. It is natural to pick

this constant in a parity symmetric way, so that

Y ±(� ! �1) = ⌥P±

2⇤
,

where

P± =

Z 1

�1
d�⌥T⌥⌥

are the light cone components of the total 2-momentum carried by the matter. Then, as a

consequence of (2.7), (2.8),

Y ±(� ! 1) = ±P±

2⇤

Consider now a general scattering process taking a set of on-shell momenta {pi} into a set

{qj}4, see Fig. ??. Let us focus on incoming particles, the argument for outgoing ones is

identical. Let us order the incoming momenta by the corresponding rapidities �i’s, so that

�
1

� �
2

� . . . �✓n. For in-states this order is equivalent to the order of particles in space.

Then integrating eqs. (2.7), (2.8) at ⌧ ! �1 we find that at early times

Y ±(⌧ ! �1, �) =
1

2⇤

�⌥P± ± 2P±
L (�)

�
.

Here P±
L (�) is the total momentum of all particles on the left of �. This definition is

ambiguous when � coincides with a position of one of the particles, � = �i. It is natural to

define it there following the central value prescription

P±
L (�i) =

p±i
2

+
X

j<i

p±j .

4
Unlike previously, here we do not treat all momenta as incoming. {qj} is a set of physical momenta

without a sign flip.
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Matter is unperturbed in     - coordinates�



Let’s focus on the asymptotic in-region

X

+ = const

X

� = const

With this prescription Y ±(�i) are independent of pi. As we will see momentarily, this is very

reasonable physically, because it eliminates contributions into the phase shift which would

correspond to particles acting upon themselves. Explicitly, at the position of i-th particle

these operators are given by

Y �(pi) =
1

2⇤

�P�
< (pi)� P�

> (pi)
�

(2.10)

Y +(pi) =
1

2⇤

�P+

> (pi)� P+

< (pi)
�
, (2.11)

where P↵
<(pi) (P↵

>(pi)) is an operator which calculates the total momentum of all particles

with smaller (larger) rapidities compared to ✓i. Note that we replaced the dependence of the

operators Y ± on the coordinate �i with the dependence on the particle momentum pi. This

is justified because they depend only on the spatial order of particles, which is completely

determined by the rapidities for the in-states.

Before introducing gravity any matter field  can be decomposed as

 =

Z 1

�1

dpp
2⇡

1p
2E

⇣
a†in(p)e

�ip
↵

�↵

+ h.c.
⌘

(2.12)

in the asymptotic region ⌧ ! �1.

To describe the e↵ect of the JT gravity we need to define the creation operators A†
in(p)

using the dynamical coordinates X± rather than �±. This amounts to

A†
in(p) = a†in(p)e

ip
↵

Y ↵

(p) = a†in(p)e
�i(p+Y �

(p)+p�Y +
(p)) . (2.13)

It is straightforward to check that these operators commute

[A†
in(p), A

†
in(p

0)] = 0 ,

as it should be for creation operators. Hence, when creating an in-state we can put them in

an arbitrary order. It is convenient to order them according to the rapidities, so that

|{pi}, inidressed =
n
inY

i=1

A†
in(pi)|0i = e�

i

2⇤

P
i<j

p
i

⇤p
j |{pi}, ini .

The argument for out-states proceeds in exactly the same way, but results in an opposite

sign in the final answer for Y ± (i.e., in the analogues of (2.10), (2.11)). Indeed, out-going

particles are antiordered in space according to their rapidities, which translates into a sign
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Dressed in-states
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Dressed out-states
flip in the dressing phase,

|{qi}, outidressed =
n
outY

i=1

A†
out(qi)|0i = e

i

2⇤

P
i<j

q
i

⇤q
j |{qi}, outi .

Finally for the dressed S-matrix we get

Ŝ ⌘ dressedhout, {qi}|{pi}, inidressed = hout, {qi}|{pi}, inie� i

2⇤

P
i<j

q
i

⇤q
je�

i

2⇤

P
i<j

p
i

⇤p
j

or, equivalently, it can be written as the operator product

Ŝ = USU , (2.14)

where

U |{pi}i = e�
i

2⇤

P
i<j

p
i

⇤p
j |{pi}i .

As discussed in [2], as a consequence of the momentum conservation, (2.14) is equivalent

to (1.1) provided the relation (1.8) holds. Note that in the form (2.14) the unitarity of

the dressed S-matrix is manifest, while the initial expression (1.1) is explicitly crossing

symmetric.

2.2 Perturbative Scattering and the T T̄

The presented derivation of the S-matrix proceeds in a somewhat unconventional way. It is

instructive to see how the gravitational scattering arises perturbatively in a more familiar

language. Namely, let us consider the quadratic action for small metric h↵� and dilaton '

perturbations around the vacuum (2). It takes the following form

S(2)

JT =

Z
'
�
@2

+

h�� + @2

�h++

� 2@
+

@�h+�
�
+

⇤

4
(h

++

h�� � 2h2

+�)

+
⇤

4

�
�+h

++

(2@�h+� � @
+

h��) + ��h��(2@+h+� � @�h++

)
�

+
1

2
h
++

T�� +
1

2
h��T++

+ h
+�T+� . (2.15)

Metric and dilaton do not contain any propagating degrees of freedom. Hence, we can

exclude them using their field equations and this will lead to a local interaction for matter
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Dressed S-matrix

Ŝ ⌘ dressedhout, {qi}|{pi}, inidressed = e

� i
2⇤

P
i<j pi⇤pj

Q.E.D.



The same result can be obtained by taking the flat space 
limit of the Schwarzian dressing. However, it needs to be 
modified to reproduce the correct (and unitary) S-matrix,

R is an overall dynamical total length of the boundary. 
This action appears non-local (cf Euclidean wormholes?). 
However, it becomes local in the static gauge, 

Sb =
⇤L2

2

⇣
e

R�R0
L + e�

R�R0
L SSch

⌘
e

R�R0
L + e�

R�R0
Le

R�R0
L + e�

R�R0
L

Sb = ⇤L2

I
du

✓
cosh

r �R0

L
� 1

2

e
R0�r

L r02
◆



A link to QCD strings

ei2�(s) = eis/4`
2

An integrable  theory of a single massless boson with

is invariant under 3D Poincare group and provides a 
promising zeroth order approximation for confining 
strings in 3D Yang-Mills. A 4D generalization exists as 
well.

SD, Gorbenko, 1511.01908 
SD, Hernandez-Chifflet, 1611.09796

JT gravity have good chances to provide a useful analogue 
of the Polyakov formalism for these non-critical strings.

also invariant under the non-linearly realized target space Poincaré symmetry ISO(1, 2).

Hence, one may wonder whether this system may serve as a starting point for a new type of

non-critical strings. Furthermore this setup allows also a natural generalization to D = 4,

which requires introducing an addtional pseudoscalar field on the worldsheet.

Intriguingly, the TBA analysis [28, 29] of the available lattice data in D = 3 and D = 4

gluodynamics [30, 31, 32] suggests that confining strings may be deformations of these simple

integrable models—leading to the Axionic String Ansatz (ASA) [27, 16]. Up until now a

theoretical development of the ASA was largely impeded by the absence of a tractable

path integral formalism to describe gravitational dressing. Such a formalism is especially

crucial for the description of the short string (glueball) sector. The reformulation of the

gravitational dressing via coupling to the JT gravity gives rise to a hope to resolve this

problem. In particular, restricting to D = 3, we find that the theory

S
3D =

Z p�g

✓
�R + 2`�2

s � 1

2
(@X)2

◆
(5.1)

enjoys a non-linearly realized ISO(1, 2) symmetry. After this symmetry is identified it should

be possible to evaluate the partition function both in the long string sector (in analogy to

section 4) and to extend this analysis to short strings (similarly to the critical string case [20]).

This may open the path to put on a solid footing the heuristic analysis of the D = 3 glueball

spectrum presented in [16]. A rather surprising outcome of [16] is that glueball quantum

numbers apparently all can be determined by the semiclassical ansatz, which a priori is

expected to work only in the large spin limit. If confirmed, this surprising e↵ectiveness of

semiclassics may be yet another indication that the partition function for (5.1) exhibits the

localization property, similarly to section 4.

Naively, one could expect the string tension to be equal to the cosmological constant

in the action (5.1). This expectation does not hold—one finds an extra factor of 2 in the

action (5.1). Also the sign of the cosmological constant in (5.1) is opposite (negative) to

what one may expect for a positive tension string. A possible explanation for this apparent

discrepancy is that to reproduce the correct result for the partition function the action (5.1)

needs to be supplemented with additional topological (total derivative) terms which do not

a↵ect the scattering, but play a role in the partition function calculation. An example of

such a term is Z p�g⇤� .

In the analogue of (4.4) this term will contribute a factor of e�Y , which in the Polyakov case

originated from the (@Xµ)2 term in the presence of X0,1 windings.

Finally, extending the ASA to D = 2 confining strings suggests that the corresponding
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Future Directions

•Calculate JT partition function 
•In very similar setups people discussed black holes,  

wormholes, baby universes and other beasts. It is not 
clear at the moment whether it is a matter of 
interpretation, small modifications are needed or 
drastically different setup is needed.  

•Relation to QCD strings gives us a number of solid 
well posed questions and experimental data. Lattice 
simulations of large N gluodynamics provide a non-
perturbative definition of a non-integrable 
gravitational theory! 


