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Motivations
Exploring the higher-spin interaction problem

Ÿ Charting the space of possible (Q)RFT & (Q)GT

Ÿ Connection to Strings (        hard to close the case for hsp in flat space)Ÿ

Ÿ Crucial outstanding issue: higher-spin symmetry breaking



Motivations

Exploring different types of spectra, including string-like ones

Exploring alternative bases of fields, leading to  
explicit, ``simple’’ forms of unbroken higher-spin theories

Having this general perspective in mind we aimed at:

(no string-like hsp theory ever built so far)
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U

U

generalise unimodular  GR

relate to free tensionless strings

Overview

study Lagrangian interactions both in 
Minkowski and in (A)dS spaces, leading to 

non-linear eqs of the form

Ÿ cubic vertices simpler than Fronsdal

new role for gauge deformation in the 
Noether procedure

single vertices encoding multi-particle 
interactions (all possible unitary spectra)

Ÿ

Ÿ

Ÿ fully off-shell (A)dS vertices 

Main outcomes

Concretely:
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Higher spins & the Noether procedure
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First step: building the free theory

⇠

L0 =
1

2
'K'

�0 ' : �0 L0 = 0



Any covariant free theory for massless particles must imply systems of the form

[Fierz 1939]

� 'µ1 ···µs = @ (µ1
⇤µ2 ···µs)

Maxwell-like hsp 

2'µ1 ···µs = 0 , 2⇤µ1 ···µs�1 = 0 ,

@ ↵'↵µ2 ···µs = 0 , @ ↵⇤↵µ2 ···µs�1 = 0 ,

'↵
↵µ3 ···µs = 0 , ⇤↵

↵µ3 ···µs�1 = 0 ,

single particle - spin s



[Fierz 1939]

� 'µ1 ···µs = @ (µ1
⇤µ2 ···µs)

Maxwell-like hsp 

single particle - spin s

Ÿ Ÿ

Any covariant free theory for massless particles must imply systems of the form

2'µ1 ···µs = 0 , 2⇤µ1 ···µs�1 = 0 ,

@ ↵'↵µ2 ···µs = 0 , @ ↵⇤↵µ2 ···µs�1 = 0 ,

'↵
↵µ3 ···µs = 0 , ⇤↵

↵µ3 ···µs�1 = 0 ,



Maxwell-like hsp 

� 'µ1 ···µs = @ (µ1
⇤µ2 ···µs)

two particles - spin s, s-2

2'µ1 ···µs = 0 , 2⇤µ1 ···µs�1 = 0 ,

@ ↵'↵µ2 ···µs = 0 , @ ↵⇤↵µ2 ···µs�1 = 0 ,

'↵�
↵� µ5 ···µs = 0 , ⇤↵�

↵� µ5 ···µs�1 = 0 ,

More unitary options: reducible spectra

Ÿ Ÿ



Maxwell-like hsp 

� 'µ1 ···µs = @ (µ1
⇤µ2 ···µs)

three particles - spin s, s-2, s-4

2'µ1 ···µs = 0 , 2⇤µ1 ···µs�1 = 0 ,

@ ↵'↵µ2 ···µs = 0 , @ ↵⇤↵µ2 ···µs�1 = 0 ,

' 000
µ7 ···µs = 0 , ⇤ 000

µ7 ···µs�1 = 0 ,Ÿ Ÿ

More unitary options: reducible spectra



Maxwell-like hsp 

� 'µ1 ···µs = @ (µ1
⇤µ2 ···µs)

no trace constraints at all

2'µ1 ···µs = 0 , 2⇤µ1 ···µs�1 = 0 ,

@ ↵'↵µ2 ···µs = 0 , @ ↵⇤↵µ2 ···µs�1 = 0 ,

full unitary spectrum of particles - spin s, s-2, s-4, … 1 or 0

outcome of tensionless limit of the free string

More unitary options: reducible spectra



Maxwell-like hsp 

� 'µ1 ···µs = @ (µ1
⇤µ2 ···µs)

no trace constraints at all

2'µ1 ···µs = 0 , 2⇤µ1 ···µs�1 = 0 ,

@ ↵'↵µ2 ···µs = 0 , @ ↵⇤↵µ2 ···µs�1 = 0 ,

full unitary spectrum of particles - spin s, s-2, s-4, … 1 or 0

outcome of tensionless limit of the free string

More unitary options: reducible spectra

Bengtsson, Ouvry-Stern ’86 Henneaux-Teitelboim ’88 
D.F.-Sagnotti ’02,  Sagnotti-Tsulaia ’03   
Buchbinder-Galajinsky-Krykhtin ‘07 

Fotopoulos-Tsulaia ’08, Sorokin-Vasiliev ’09,  
D.F. ’10, Agugliaro-Azzurli-Sorokin ’16 . . .



Maxwell-like hsp 

Ÿ
Possible to encompass all of these options 

in one and the same Lagrangian
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Free, k-th reducible Maxwell-like theory

L =
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Lagrangian for all possible 
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Free, k-th reducible Maxwell-like theory

L =
1

2
' (2 � @ @·)'

Lagrangian for all possible 
unitary spectra: from the 

single spin s to the tensionless 
string one

Ÿ

2' � @ @ · ' +
2 k

Qk
i=1[D + 2(s� k � i)]

⌘ k @ · @ · ' [k�1] = 0 ,

U Trace conditions enforce a projection of the corresponding eom:

Skvortsov-Vasiliev 2007(fully irreducible flat case:                                     )U Can be extended to (A)dS

Absence of traces in           crucial to our cubic vertex constructionL
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Assuming that we keep them, 
which role do they play in the Noether procedure?
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for instance, in the Maxwell-like case:

� (0)
0 ' = @ ⇤ s.t. @ · ⇤ = 0
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•
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thus, to first order

•
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no differences for L1

two contributions to the deformation of the gauge transformation



The cubic vertex

⇠



The cubic vertex 
General scheme:

select three fields:Ÿ

Ÿ

Ÿ

' (s1), ' (s2), ' (s3)

select a total number of derivatives n = n1 + n2 + n3

consider first transverse-traceless fields and compute



The cubic vertex 
General scheme:

select three fields:Ÿ

Ÿ

Ÿ

' (s1), ' (s2), ' (s3)

select a total number of derivatives n = n1 + n2 + n3

consider first transverse-traceless fields and compute

fixes the coefficients  
of the TT vertex

� (LTT + . . .) ⇠ ⇤ ( ) + 2⇤ ( ) + @ · ⇤ ( )



The cubic vertex 
General scheme:

select three fields:Ÿ

Ÿ

Ÿ

' (s1), ' (s2), ' (s3)

select a total number of derivatives n = n1 + n2 + n3

consider first transverse-traceless fields and compute

D = @ · '� 1

2
@' 0

�D = 2⇤

s.t.Fronsdal: 

� (LTT + . . .) ⇠ ⇤ ( ) + 2⇤ ( ) + @ · ⇤ ( )



The cubic vertex 
General scheme:

select three fields:Ÿ

Ÿ

Ÿ

' (s1), ' (s2), ' (s3)

select a total number of derivatives n = n1 + n2 + n3

consider first transverse-traceless fields and compute

�D = 2⇤

s.t.Maxwell-like: 
D = @ · '

� (LTT + . . .) ⇠ ⇤ ( ) + 2⇤ ( ) + @ · ⇤ ( )



The cubic vertex 
General scheme:

select three fields:Ÿ

Ÿ

Ÿ

' (s1), ' (s2), ' (s3)

select a total number of derivatives n = n1 + n2 + n3

consider first transverse-traceless fields and compute

Fronsdal: � ' 0 = 2 @ · ⇤

� (LTT + . . .) ⇠ ⇤ ( ) + 2⇤ ( ) + @ · ⇤ ( )



The cubic vertex 
General scheme:

select three fields:Ÿ

Ÿ

Ÿ

' (s1), ' (s2), ' (s3)

select a total number of derivatives n = n1 + n2 + n3

consider first transverse-traceless fields and compute

Maxwell-like 

� (LTT + . . .) ⇠ ⇤ ( ) + 2⇤ ( ) + @ · ⇤ ( )
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The cubic vertex 

' 0 # , D ! 0 1 2 3
0 TT D'' DD' DDD
1 ' 0 '' ' 0 D' DD' 0

2 ' 0 ' 0 ' ' 0 ' 0 D
3 ' 0 ' 0 ' 0

Building blocks for Maxwell-like cubic vertices

In the Maxwell-Like case,only de Donder terms (i.e. 
divergences) are required:

Related work: Fotopoulos-Tsulaia 2010 flat-space triplet cubic vertex (fully reducible case)
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Deformation of the constraint
The full Maxwell-like cubic vertex has the schematic form

L1 = LTT + L1,D + L1,DD + L1,DDD

compute         , now collecting all terms that vanish on the free shell�L1

�1 '

next step:

determine 
Ÿ
Ÿ

�L1 ⇠ �1 M + �2 @ · D

vanishes on the free eom, but not locally proportional to M 



Deformation of the constraint

�{L0 + L1} ⇠ @ · ⇤ @ · D + �1 M + �2 @ · D

Consider the full variation up to cubic order:

�L0 � (0)
1 '

non-locally  
proportional 

to the free eomŸ Ÿ

can be combined together to restore gauge invariance 
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Deformation of the constraint

spin 2: Maxwell-like Ÿ unimodular gravity

@ µ⇤µ = 0 Ÿ D µ⇤µ = 0
�

In general, we need to deform the constraint:

Even when not needed, the deformation may be crucial to restore geometry

could be avoided at cubic order!

@ · ⇤ + �2 = 0
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Remarks:⇠
Maxwell-like vertices                                 subsume several cross couplings of the formU

U

s1 � s2 � s3

(s1 � 2k1)� (s2 � 2k2)� (s3 � 2k3)

depending on the strength of the trace conditions imposed; several of them involve ``too 
many derivatives’’.

Full (A)dS extension achieved via the ambient space approach.

Twofold simplification:

Ÿ No traces

Ÿ Flat, commuting derivatives to be then projected to the embedded (A)dS manifold

Traces can be consistently included, if wanted, thus providing the freedom to selectively 
rearrange part of the cross couplings.

U
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ML cubic  vertices  provide  a  simple  encoding  of  metric-like  interactions 
among physical fields, covering different spectra with the same Lagrangian. 

e

e The  constraints  on  the  free  gauge  symmetry  are  to  be  deformed;  this 
technical option may retain a deeper meaning.⇠

U Deformation of the constraints in the Fronsdal theory: not needed at the flat 
cubic level but indications that it might be important in (A)dS

U Beyond cubic order.

(Would-be) fully interacting theories would comprise a variety of spectra, 
possibly with infinitely-many particles for each spin (including scalars):

different from usually considered Vasiliev’s theories•
•

U

any candidate holographic dual?
different (maybe) from tensionless string spectrum

•



⇠..


