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‘Motivations

Exploring the higher-spin interaction problem

= Charting the space of possible (O)RFT & (Q)GT

= Connection to Strings ( =» hard to close the case for hsp in flat space)

=% Crucial outstanding issue: higher-spin symmetry breaking



‘Motivations

Having this general perspective in mind we aimed at:

Exploring alternative bases of fields, leading to

explicit, ~simple” forms of unbroken higher-spin theories

Exploring different types of spectra, including string-like ones
(no string-like hsp theory ever built so far)
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Overview

Concretely:

study Lagrangian interactions both in
Minkowski and in (A)dS spaces, leading to
non-linear eqs of the form

N

0 =000 = J (), o) Main outcomes

; =»  cubic vertices simpler than Fronsdal

A. Campoleoni, D.F. 13

X. Bekaert, N. Boulanger, D.F. " 15 - fully off-shell ( A)dS vertices

D.F., S. Lyakhovic, A. Sharapov 14

D.F, 10- 12

new role for gauge deformation in the
Noether procedure

3k generalise unimodular GR . . . . .
single vertices encoding multi-particle

e relate to free tensionless strings => interactions (all possible unitary spectra)
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Basic 1dea: construct interactions perturbatively

while keeping
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Maxwell-like ﬁsy

Any covariant free theory for massless particles must imply systems of the form

| Fierz 1939]
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‘More unimry O}?ﬁOHS: reducible spectra
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three particles - spin s, s-2, s-4



Maxwell-like ﬁsp

‘More unimry O}OﬁOHS: reducible spectra

590/” T 8(,“ A’u2 ...us)

0@y opn, = 0, oA, op., =0,
0“Capyn, =0, O“Nopg ey = 0,

no trace constraints at all
full unitary spectrum of particles - spin s, s-2,s-4, ... | or 0

outcome of tensionless limit of the free string



Maxwell-like ﬁsp

‘More unimry O}OﬁOHS: reducible spectra

590/” T 8(,“ A’u2 ...us)

0@y opn, = 0, oA, op., =0,
0“Capyn, =0, O“Nopg ey = 0,

no trace constraints at all
full unitary spectrum of particles - spin s, s-2,s-4, ... | or 0

outcome of tensionless limit of the free string

Bengtsson, Ouvry-Stern 86 Henneaux-Teitelboim ’88
D.F.-Sagnotti ’02, Sagnotti-Tsulaia '03
Buchbinder-Galajinsky-Krykhtin ‘07
Fotopoulos-Tsulaia ’08, Sorokin-Vagiliev ’09,
D.F.’10, Agugliaro-Azzurli-Sorokin ’16 . . .




Maxwell-like ﬁsp

‘More unimry O}?ﬁOﬂS.‘ reducible spectra

590/” T 8(,“ A’u2 ...us)

Possible to encompass all of these options
in one and the same Lagrangian
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to go off-shell...

consistency
L@y - s >< 07 / condition DAM s —1 >< 0 9
0% oy . X0, DA gy = 0,

.. ] .. ]

_—

00y - us can be compensated only by 00 (1, 0% O py o )

M= U@pup, — a(ulaQS"auz---us) |

~ minimal building-block for any gauge theory
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Free, k-th reducible Maxwell-like tﬁeory
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Free, k-th reducible Maxwell-like tﬁeory

/" Lagrangian for all possible "\
" unitary spectra: from the
\ single spin s to the tensionless }

string one |

L=Zp(@O—-00)p m=p

3 Trace conditions enforce a projection of the corresponding eom:

2k k k—1]
w — 00 - - nko.0-pl =0,
[Lioi[D+2(s — k — i)

3 Can be extended to (A)dS (fully irreducible flat case:| Skvortsov-Vasiliev 2007 )

Absence of tracesin £ crucial to our cubic vertex construction
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Maxwell-like Fronsdal

gauge theories go ™\
| together with '
\._constrained gauge symmetry -

Assuming that we keep them,
which role do they play in the Noether procedure?

can be removed in various ways: solving, introducing pure-gauge non-local terms, via auxiliary fields
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add an equation to the system

if
OAN =0

are the conditions on the free gauge symmetry

then, in principle at least, they might get corrected:

Slel = Sole]l + gSile] + 9°Sal¢] ...,
b =0+ gdio+gide...,
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1st consequence
each 0r¢ admits an expansion:

e =00 + Mo+ 8P o+

k-+1) <( explicitly on ~ ",
implicitly on ~ ¢!, via its A—dependence.

5\ =0y

\

for instance, in the Maxwell-like case:

o 0\Vp=0A st. 9-A=0
o Mo =0A st. 9-A+gOi(A o) =0
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2nd consequence
the Noether system changes:
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2nd consequence
the Noether system changes:

(6,0): 08 = /%5@

(0L OL
o(e,gp ): 0S8 :/ 4 (5(1> — 51(0)90) -+ —150(0)90}

590 %,
(0L oL oL
3\ . - 050 /¢ (2) (1) (0) 1,¢(1) (0) 2 ¢ (0)
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thus, to first order

® no differences for L1

® two contributions to the deformation of the gauge transformation
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The cubic vertex

General scheme:

=>» select three fields: 90(81), 90(82)’ 90(83)
=>» select a total number of derivatives 7 = N1+ N2 + N3

=) consider first transverse-traceless fields and compute

Maxwell-like
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vertex, one needs to introduce terms containing both

de Donder tensors and traces:
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The cubic vertex
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&

de Donder tensors and traces:

o'l ,D— 0 1 2 3
0 TT Doy | DDy | DDD
1 p'op | o' Do | DDy’
2 p' o' | ' D
3 p' o o’

Building blocks for Fronsdal’s cubic vertices
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The cubic vertex

&

In the Maxwell-Like case,only de Donder terms (i.e.
divergences) are required.

\ «AA\\ i ."}" / :fﬁi - < -~ .
A RE TR
%y, SO AN
p N

Buildihg blocks for Maxwell-like cubic vertices

ol bo H%oj

Related work: | Fotopoulos-Tsulaia 2010 | flat-space triplet cubic vertex (fully reducible case)
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=» compute 0 L1, now collecting all terms that vanish on the free shell
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@qformation @C the constraint

The full Maxwell-like cubic vertex has the schematic form

L1 =L+ Lip + Lipp + L1pDD

L —

next step:

=» compute 0 L1, now collecting all terms that vanish on the free shell

=» determine 01 ¢
0L ~ A{M + A,0-D

vanishes on the free eom, but not locally proportional to /



CD@Cormau'on of the constraint

Consider the full variation up to cubic order:

non-locally
0L 0 (0) roportional
0 T Z prop

to the free eom

v v

can be combined together to restore gauge invariance
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CD@Cormau'on @C the constraint

In general, we need to deform the constraint:

0N+ Ay =0

Even when not needed, the deformation may be crucial to restore geometry

spin 2:  Maxwell-like ==  unimodular gravity

a’uAM:O » DMAM:O

y could be avoided at cubic order!
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3¢ Maxwell-like vertices S1 — So — S3  subsume several cross couplings of the form

(81 — 2]61) — (82 — ng) — (83 — ng)

depending on the strength of the trace conditions imposed; several of them involve "“too
many derivatives” .

3 Traces can be consistently included, if wanted, thus providing the freedom to selectively
rearrange part of the cross couplings.

3% Full (A)dS extension achieved via the ambient space approach.

Twofold simplification:

=)» No traces

=» Flat, commuting derivatives to be then projected to the embedded (A)dS manifold
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% ML cubic vertices provide a simple encoding of metric-like interactions
among physical fields, covering different spectra with the same Lagrangian.

s The constraints on the free gauge symmetry are to be deformed; this
technical option may retain a deeper meaning.
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% Deformation of the constraints in the Fronsdal theory: not needed at the flat
cubic level but indications that it might be important in (A)dS

3% Beyond cubic order.

% (Would-be) fully interacting theories would comprise a variety of spectra,
possibly with infinitely-many particles for each spin (including scalars):
® different from usually considered Vasiliev’s theories

® different (maybe) from tensionless string spectrum

® any candidate holographic dual?






