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Introduction

Nonperturbative methods have been well-developed for QED with
the so-called t-electric potential steps (e.g., pulse electric field).

In this case a calculation technique is based on the existence of
specific exact solutions (in and out solutions) of the Dirac
equation.

i∂tψ (x) = H (t)ψ (x) , H (t) = γ0 (γP+m) ,

Px = −i∂x − U (t) , P⊥ = −i∇⊥, U (t) = qAx (t) , q = −e

However, there are only few cases when such solutions are known.
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Introduction

We demonstrate that for electric fields slowly varying with time
there exist physically reasonable approximations that maintain the
nonperturbative character of QED calculations even in the absence
of the exact solutions. Defining the slowly varying regime in
general terms, we can observe a universal character of vacuum
effects caused by a strong electric field for
(1) the total density of created pairs,

ncr =
J(d )

(2π)d−1

∫
dpNcr

n , J(d ) = 2
[d/2]−1 for fermions

Ncr
n =

〈
0, in

∣∣∣a†
n(out)an(out)

∣∣∣ 0, in
〉
=
∣∣( −ψn, +ψn

)∣∣2
ζψn (x) = g

(
+|ζ
)
+ψn (x) + g

(
−|ζ
)
−ψn (x)

an(out) = g(+|+)an(in) + g(+|−)b†
n(in)
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Introduction

(2) for the vacuum mean values of the current density and
energy-momentum tensor,

〈jµ(t)〉 = 〈0, in|jµ|0, in〉, 〈Tµν(t)〉 = 〈0, in|Tµν|0, in〉 .

jµ =
q
2

[
Ψ̂(x), γµΨ̂ (x)

]
, Tµν =

1
2
(T canµν + T canνµ ) ,

T canµν =
1
4

{
[Ψ̂(x), γµPνΨ̂ (x)] + [P∗ν Ψ̂(x), γµΨ̂ (x)]

}
,

Pµ = i∂µ − qAµ(x), Ψ̂(x) = Ψ̂† (x) γ0.

Ψ̂ (x) = ∑
n

[
an(in) +ψn(x) + b

†
n(in) _ψn(x)

]
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Introduction

If the electric field is weak, Ncr
n � 1, the probability of the vacuum

to remain a vacuum has simple representation,

Pv = |cv |2 ≈ 1− 2ImS ≈ 1−Ncr, Ncr = ∑
n
Ncr
n .

cv = 〈0, out|0, in〉 = e iS , S is Schwinger ′s EA
The latter relations are often used in semiclassical calculations to
find Ncr

n and n
cr = Ncr/V(d−1).

(−) When the electric field is strong, Ncr
n → 1, the sum Ncr

cannot be considered as a small quantity.
(+) the large parameter: For slowly varying strong electric fields

ncr ∼ ∆t/∆tm
st , ∆t/∆tm

st � 1,

∆tm
st = ∆tstmax

{
1,m2/eE (t)

}
, ∆tst =

[
eE (t)

]−1/2

We can take into account only leading terms ∼ ∆t/∆tm
st , whereas

oscillation terms are disregarded.
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T-constant electric field

Ncr
n ≈ N0n = e−πλ, λ =

π2⊥
eE

, π⊥ =
√
p2⊥ +m

2

is quasiconstant over the wide range of the longitudinal
momentum px for any given λ. Pair creation effects in such fields
are proportional to large increments of the longitudinal kinetic
momentum, ∆U = e |Ax (+∞)− Ax (−∞)|.
T -const. EF turns on to E at −T/2 = tin and turns off to 0 at
T/2 = tout .

A1(t) = −Et, t ∈ [tin, tout ], being constant for t ∈ (−∞, tin) and
t ∈ (tout ,+∞).
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Total density of created pairs

The particle energy is primarily determined by an increment of the
longitudinal kinetic momentum in

D (t) : 〈Px (t)〉 < 0, |〈Px (t)〉| � π⊥,

〈Px (t)〉 = 〈Px (tin)〉 − [U (t)− U (tin)]

D (t) ⊂ D
(
t ′
)
⊂ D (tout) if t < t ′ < tout

The leading contribution due to the T -constant field

ncr ≈ ñcr =
J(d )

(2π)d−1

∫ eE (tin+∆t)

eEtin
dpx

∫
√

λ<K⊥
dp⊥e−πλ,

√
eE∆t � K 2⊥ � max

{
1,m2/eE

}
,

∆t = t − tin
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Total density of created pairs

We call E (t) a slowly varying electric field on a time interval ∆t if∣∣∣∣∣ Ė (t)∆tE (t)

∣∣∣∣∣� 1,
[
eE (t)

]1/2
∆t � max

{
1,m2/eE (t)

}
,

In the general case it is enough to consider a finite interval(
teffin , teffout

]
. We divide this interval into M intervals

∆ti = ti+1 − ti > 0 and represent

ñcr =
M

∑
i=1

∆ñcr
i ,

M

∑
i=1

∆ti = teffout − teffin ,

∆ñcr
i ≈

J(d )
(2π)d−1

∫ eEi (ti+∆ti )

eEi ti
dpx

∫
√

λi<K⊥
dp⊥N

(i )
n ,

N (i )n = e−πλi , λi =
π2⊥
eEi

,
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Total density of created pairs

Representing the variable px as

px = U (t) , U (t) =
∫ t

tin
dt ′eE

(
t ′
)
+ U (tin)

we find the universal form in the leading-term approximation for a
slowly varying, but otherwise arbitrary strong electric field

ñcr ≈
J(d )

(2π)d−1

∫ tout

tin
dteE (t)

∫
dp⊥Nuni

n , Nuni
n = e−

ππ2⊥
eE (t)

After the integration over p⊥,

ñcr =
J(d )

(2π)d−1

∫ tout

tin
dt [eE (t)]d/2 e−

πm2
eE (t)
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The vacuum-to-vacuum transition probability

Using the identity
−κ ln

(
1− κNuni

n

)
= Nuni

n + (−1)(1−κ)/2 (Nuni
n

)2 . . ., in the same
manner one can derive an universal form of the vacuum-to-vacuum
transition probability

Pv ≈ exp
{
−
V(d−1)J(d )
(2π)d−1

∞

∑
l=0

∫ tout

tin
dt
(−1)(1−κ)l/2 [eE (t)]d/2

(l + 1)d/2 e−
π(l+1)m2

eE (t)

}

J(d ) is the number of the spin degrees of freedom;
for fermions κ = +1 and bosons κ = −1.
In fact, it is the possibility to adopt a locally constant field
approximation which makes an effect universal.
These representations do not require knowledge of the
corresponding solutions of the Dirac equation.
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Total density of created pairs. Examples

One obtains precisely expressions that are found when directly
adopting the approximation to the exactly solvable cases:

(i) ∆UT = eE0T for T -const. field; ;

(ii) E (t) = E0 cosh−2 (t/TS) , ∆US = 2eE0TS for Sauter-like field

(iii) E (t) = E0
[
Θ (−t) ek1t +Θ (t) e−k2t

]
,

∆Up = eE0
(
k−11 + k−12

)
for a peak field.

(i) ñcr = r cr ∆UT

eE0
;

(ii) ñcr = r cr ∆US

2eE0

∫ ∞

0

dtt−1/2

(t + 1)(d+1)/2
e−

πtm2
eE0 ;

(iii) ñcr = r cr ∆Up

eE0

∫ ∞

1

ds
sd/2+1 e

− π(s−1)m2
eE0
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Total density of created pairs. Examples

The obtained universal forms have specially simple forms:
(1) for a weak electric field (m2/eE0 � 1),
[eE (t)]d/2 ≈ [eE0]d/2;
(2) for a strong enough electric field (m2/eE0 � 1):

(i) ñcr = r cr ∆UT

eE0
;

(ii) ñcr ≈ r cr ∆US

2eE0

√
πΓ (d/2)

Γ (d/2+ 1/2)
;

(iii) ñcr = r cr ∆Up

eE0

2
d

,

r cr =
J(d ) (eE0)

d/2

(2π)d−1
e−

πm2
eE0
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Total density of created pairs. Examples

New: the case of a strong Gauss pulse,

E (t) = E0 exp
[
− (t/TG )2

]
, TG → ∞

We do not have an exact solution and known semiclassical
approximations are not applicable. However, we find

ñcr ≈
J(d ) (eE0)

d/2 TG
d(2π)d−2

, Pv ≈ exp
[
−V(d−1)ñcr

∞

∑
l=1

l−d/2

]
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The vacuum-to-vacuum transition probability

Pv ≈ exp
{
−
V(d−1)J(d )
(2π)d−1

∞

∑
l=0

∫ tout

tin
dt
(−1)(1−κ)l/2 [eE (t)]d/2

(l + 1)d/2 e−
π(l+1)m2

eE (t)

}

coincides with the leading term approximation of derivative
expansion results from field-theoretic calculations for d = 3 and
d = 4 [G. Dunne and T. Hall, Phys. Rev. D 58, 105022 (1998); V. P. Gusynin and I. A. Shovkovy, J. Math.

Phys. 40, 5406 (1999)],
Pv = exp

(
−2ImS (0)

)
.

In this approximation, Pv was derived from a formal expansion in
increasing numbers of derivatives of the background field:

S = S (0)[Fµν] + S (2)[Fµν, ∂µFνρ] + ...

where S (0) involves no derivatives of the background field.
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Time evolution of vacuum instability

The mean values

〈jµ(t)〉 = Re 〈jµ(t)〉c + Re 〈jµ(t)〉p ,

〈jµ(t)〉c ,p = iq tr
[
γµSc ,p(x , x ′)

]∣∣
x=x ′ ;

〈Tµν(t)〉 = Re 〈Tµν(t)〉c + Re 〈Tµν(t)〉p ,

〈Tµν(t)〉c ,p = i tr
[
AµνSc ,p(x , x ′)

]∣∣
x=x ′ ,

Aµν = 1/4
[
γµ

(
Pν + P ′∗ν

)
+ γν

(
Pµ + P ′∗µ

)]
Mean values and probability amplitudes are calculated with the
help of different kinds of propagators:

Sc (x , x ′) = i〈0, out|T̂ Ψ̂ (x) Ψ̂† (x ′) γ0|0, in〉c−1v ,

Scin(x , x ′) = i〈0, in|T̂ Ψ̂ (x) Ψ̂† (x ′) γ0|0, in〉
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Time evolution of vacuum instability

As a consequence of

D (t) : 〈Px (t)〉 < 0, |〈Px (t)〉| � π⊥,

we have a large parameter 〈Px (t)〉 and

i∂t ±ϕn (t) ≈ ± |〈Px (t)〉| ±ϕn (t)

Leading contribution to the function

Sp(x , x ′) = Scin(x , x ′)− Sc (x , x ′)

can be represented by

Sp(x , x ′) ≈ −i ∑
n
Ncr
n

[
+ψn(x)

+ψ̄n(x
′)− −ψn(x)

−ψ̄n(x
′)
]

.

The dominant contribution to the r.h.s. of Sp is from a subrange
D (t) ⊂ D (tout).
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Time evolution of vacuum instability

Using the universal form of the differential numbers of created
pairs, Ncr

n ≈ Nuni
n , and performing the integration over p⊥, we

find the following universal behavior for any large difference t − tin:

〈j1(t)〉p ≈ 2eñcr (t) , 〈T00(t)〉p ≈ 〈T11(t)〉p ,

〈T00(t)〉p ≈
J(d )

(2π)d−1

∫ t

tin
dt ′
[
U (t)− U

(
t ′
)] [

eE
(
t ′
)]d/2 e

− πm2

eE (t ′) ,

〈Tll (t)〉p ≈
J(d )
(2π)d

∫ t

tin

dt ′ [eE (t ′)]d/2+1

[U (t)− U (t ′)] e
− πm2

eE (t ′) , l = 2, ...,D .

For t > tout, the pair production stops, vacuum polarization effects
disappear, and

〈j1(t)〉
∣∣
t>tout

≈ 〈j1(tout)〉p , 〈Tµµ(t)〉
∣∣
t>tout

≈ 〈Tµµ(tout)〉p .

〈j1(tout)〉p and 〈Tµµ(tout)〉p are the features of real pairs created
from the vacuum.
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Time evolution of vacuum instability. Examples

For fields admitting exactly solvable cases:
(i) the T -constant field

〈T00(tout)〉p ≈ 〈T11(tout)〉p ≈ eE0r cr (tout − tin)2 ,

〈Tll (tout)〉p ≈ π−1r cr ln
[√
eE0 (tout − tin)

]
, l = 2, ...,D.

(II) For Sauter-like field, E (t) = E0 cosh−2 (t/TS),

〈T00(tout)〉p ≈ 〈T11(tout)〉p ≈ eEr crT 2S

[
δ− G

(
d
2

,
πm2

eE0

)]
,

〈Tll (tout)〉p ≈
r cr

2π

[√
πΨ

(
1
2

, 2− d
2

;
πm2

eE0

)
+ G

(
d
2
− 1,

πm2

eE0

)]
.

δ =
∫ ∞

0

dt
t1/2(t + 1)(d+1)/2

e−
πtm2
eE0



Introduction Total density Mean values Vacuum polarization Summary

Time evolution of vacuum instability. Examples

(III) For the peak field, E (t) = E0
[
Θ (−t) ek1t +Θ (t) e−k2t

]
,

〈T00(tout)〉p ≈ 〈T11(tout)〉p ≈ eE0r cr [k−12 + k−11
]

×
{[
k−12 − k−11

]
G
(
d
2
+ 1,

πm2

eE0

)
+ k−11 G

(
d
2

,
πm2

eE0

)}
,

〈Tll (tout)〉p ≈
r cr

2π

[
G
(
d
2
− 1,

πm2

eE0

)
+
k2
k1
G
(
d
2

,
πm2

eE0

)]
.

G (α, x) =
∫ ∞

1

ds
sα+1 e

−x (s−1)

One obtains precisely expressions that are found when directly
adopting the approximation to the exactly solvable cases. It is an
independent confirmation of universal form.
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Example. T-constant electric field in graphene

In case ∆tgst < ∆t < ∆tB , (∆tgst - non-linear regime, effects of
particle-creation reach their asymptotic values; ∆tB - continuous
Dirac model)

∆tgst = (e |E | vF / h̄)−1/2 � tγ ' 0.24fs, ∆tB = 2π h̄(e |E | a)−1,
Lx ∼ 1µm, ∆t ∼ Tbal ∼ 10−12s, V = ELx > 7× 10−4 V,

∆tB is the Bloch time, a ≈ 0.142 nm is the carbon-carbon distance.
[Gavrilov, Gitman, Yokomizo, PRD 86 (2012)].
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Example. One-loop mean current in graphene

Multiplied by a degeneracy factor of four, describe, respectively:

ncrg = r
cr
g T , r crg = π−2

(
vF h̄

3)−1/2 |eE |3/2 ;

〈j1(t)〉g = sgn(E )A∆t , A = 2evF r
cr
g ,

∆t = t − tin.

These results hold true for all t that satisfy the stabilization
condition ∆t � ∆tgst .
〈j1(t)〉g ∼ |E |3/2 is a key formula in the study of the
conductivity in the graphene at low carrier density beyond
the linear response in dc. It describes the mean electric
current of coherent carriers produced by the applied electric
field.
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Vacuum polarization

The results [S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 78, 045017 (2008); S. P. Gavrilov, D. M.

Gitman, and N. Yokomizo, Phys. Rev. D 86, 125022 (2012) ] can be generalized to the case
of arbitrary slowly varying electric field:
in the leading-term approximation

Re〈T00(t)〉c = −Re〈T11(t)〉c = E (t)
∂ReL [E (t)]

∂E (t)
− ReL [E (t)] ,

Re〈Tll (t)〉c = ReL [E (t)] , l = 2, ...,D,

L [E (t)] = 2[d/2]−2
∫ ∞

0

ds
s
cosh [eE (t) s ] f̃ (0)(x , x , s),

f̃ (0)(x , x , s) = −
eE (t) s−d/2+1 exp

(
−im2s

)
(4πi)d/2 sinh [eE (t) s ]

.

Note that L [E (t)] evolves in time due to the time dependence of
the field E (t). Re〈Tµµ(t)〉c have been regularized and
renormalized using ReL [E (t)]→ ReLren [E (t)].
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Vacuum polarization

In the strong-field case ( m2/eE (t)� 1), the leading
contributions are

Re 〈Tµµ(t)〉cren ∼
{
[eE (t)]d/2 , d 6= 4k
[eE (t)]d/2 ln

[
eE (t) /M2

]
, d = 4k

.

The final form of the vacuum mean components of the EMT are

〈Tµµ(t)〉ren = Re 〈Tµµ(t)〉cren + Re 〈Tµµ(t)〉p

For t < tin and t > tout the electric field is absent such that
Re〈Tµµ(t)〉cren = 0.
Lren [E (t)] coincide with leading term approximation of derivative
expansion results [G. Dunne and T. Hall, Phys. Rev. D 58, 105022 (1998); V. P. Gusynin and I. A.

Shovkovy, J. Math. Phys. 40, 5406 (1999)]:

S (0)[Fµν] =
∫
dxLren [E (t)]

It is proof that S (0) is given exactly by the semiclassical WKB limit
for an arbitrary strong electric fields slowly varying with time.
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The main new results obtained

Defining the slowly varying regime in general terms, we can
observe the existence of universal forms for the time evolution
of vacuum effects caused by strong electric field. Such
universality appears when the duration of the external field is
suffi ciently large in comparison to the scale

∆tst =
[
eE (t)

]−1/2
, that is, there are time intervals, inside of

which the electric field potential can be approximated by a
potential of a constant electric field.

We find universal approximate representations for the total
density of created pairs and vacuum means of current density
and EMT components that hold true for an arbitrary t-electric
potential step slowly varying with time.



Introduction Total density Mean values Vacuum polarization Summary

The main new results obtained

Defining the slowly varying regime in general terms, we can
observe the existence of universal forms for the time evolution
of vacuum effects caused by strong electric field. Such
universality appears when the duration of the external field is
suffi ciently large in comparison to the scale

∆tst =
[
eE (t)

]−1/2
, that is, there are time intervals, inside of

which the electric field potential can be approximated by a
potential of a constant electric field.

We find universal approximate representations for the total
density of created pairs and vacuum means of current density
and EMT components that hold true for an arbitrary t-electric
potential step slowly varying with time.



Introduction Total density Mean values Vacuum polarization Summary

The main new results obtained

The universality under the question is associated with the big
state density that is a large parameter in the slowly varying
regime. In fact, we explicitly show that the pair creation can
be treated as a phase transition from the initial vacuum to a
plasma of electron-positron pairs.

We establish relations of these representations with leading
term approximations of derivative expansion results. These
results allow one to formulate some semiclassical
approximations that are not restricted by smallness of
differential mean numbers of created pairs.
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The end


	Introduction
	Total density
	Mean values
	Vacuum polarization
	Summary

