GRAVITY, DUALITY & CONFORMAL SYMMETRY

Supersymmetric 6-D gravity with (4,0) Susy

GINZBURG CENTENNIAL CONFERENCE on PHYSICS

Theory X?

- Considerable evidence for mysterious interacting 6-D (2,0) non-lagrangian SCFT
- Key to understanding SYM in D<6, S-duality
- Similar story for gravity?
- IF there is an interacting (4,0) SCFT in 6-D, it would be exotic CONFORMAL theory giving SUGRA in D<6

(2,0) Theory

- Free (2,0) theory in 6-D: 2-form B, H=H*
- Reduces to 5-D N=4 Maxwell, F=dA
- Interacting (2,0) SCFT, non-lagrangian, reduces to 5-D SYM
- Strong coupling limit of 5-D SYM: (2,0) SCFT
- Stringy constructions: M5-brane, IIB on K3

(4,0) Theory

- Free (4,0) theory in 6-D: SCFT
- Reduces to 5-D linearised N=8 SUGRA
- Is there an interacting (4,0) SCFT? Nonlagrangian, reducing to 5-D SUGRA?
- Strong coupling limit of 5-D SUGRA?
- Exotic conformal theory of gravity?
- Highly symmetric (4,0) phase of M-theory?

hep-th/0004195, hep-th/0011215, hep-th/0004086

Gravity = $(YM)^2$

• Free SUGRA ~ Free (SYM)²

• Free (4,0) ~ Free ((2,0) theory)²

Χ

- Free (2,0) reduces to 5-D theory of photon
 + dual photon
- Free (4,0) reduces to 5-D theory of graviton
 + dual graviton + double dual graviton

5-D Superalgebra

 $\{Q^a_{\alpha}, Q^b_{\beta}\} = \Omega^{ab} (\Gamma^{\mu} C)_{\alpha\beta} P_{\mu} + C_{\alpha\beta} (Z^{ab} + \Omega^{ab} K)$

- Central charges Z,K
- Z Electric charges for Maxwell fields
- States with K ~ KK modes of 6-D (p,0) theory
- SYM: K carried by BPS solitons (from YM instantons)
- Does M-theory on T⁶ have BPS states with K?
- Do they become massless at strong coupling?

Maxwell in Ddimensions • Photon A_{μ}

- Dual photon: n=D-3 form $\tilde{A}_{\mu_1...\mu_n}$ $F = *\tilde{F}$
- Magnetic charges: D-4 branes.
 A has Dirac strings, or connection on nontrivial bundle, Ã well-defined
- Electric charges: 0-branes.
 Ã has Dirac string singularities, A OK
- YM? No non-abelian theory for \tilde{A}

(n, n)

(n+1, n+1)

Field strengths are Dual:

$$R \qquad \quad \tilde{R} = \ast R \qquad \quad \tilde{\tilde{R}} = \ast R \ast$$

Duality Exchanges field equals and Bianchis $R_{\mu\rho\nu}^{\ \rho} = 0 \qquad \leftrightarrow \qquad \tilde{R}_{[\mu_1...\mu_n\mu_{n+1}\nu]\rho} = 0$

$$R_{[\mu\nu\rho]\sigma} = 0 \qquad \leftrightarrow \qquad \tilde{R}_{\mu_1\dots\mu_n\rho\,\nu}{}^{\rho} = 0$$

Electric and Magnetic Grav Sources $\ T, ilde{T}$ for $\ h, ilde{h}$

$$ar{T}$$
 : Dirac strings for h T : Dirac strings for $ilde{h}$

D=6 (2,0) free theory R-symmetry Sp(2)=USp(4) Superconformal OSp(4/8*) \supset USp(4)xSO(6,2) B_{MN} H = *H5 scalars, 4 fermions

Reduce to D=5

$$B_{\mu\nu}, B_{\mu5} = A_{\mu} \qquad H = *F$$

A,B dual, not independent A, 5 scalars, 4 fermions: D=5 N=4 vector multiplet Reduce to D=4 2 vector fields $B_{\mu i} = A_{\mu i}$ i = 1, 2 F₁=*F₂ SL(2,Z): diffeos on T² (A₁,A₂) doublet Only one independent field, D=4 N=4 vector multiplet SL(2,Z): (A₁,Ã₁) doublet, E-M duality

The (4,0) Supermultiplet

D=6 little group $SO(4) \sim SU(2) \times SU(2)$

States in representations of $SU(2) \times SU(2) \times USp(8)$

(5,1;1) + (4,1;8) + (3,1;27) + (2,1;48) + (1,1;42)

Covariant fields

 $C_{MNPQ}, \psi^a_{MN}, B^{ab}_{MN}, \lambda^{abc}, \phi^{abcd}$

D=6 Free (4,0) Theory

42 scalars 27 self-dual B₂: H = *HGauge field C_{MNPQ}

Curvature

 G_{MNPQRS}

Hull

Self-dual: G=*G=G*

"Supergravity without a graviton" Superconformal $OSp(8/8^*) \supset USp(8)xSO(6,2)$

Self-duality: Only one of these independent, dual gravitons

Spectrum of D=5 N=8 SUGRA! Graviton, 27 vectors, 42 scalars Diffeos

Vectors from B_{MN} Graviton from C_{MNPQ} Diffeos from C gauge transformations. Parameter

Reduce to D=4

42 scalars \rightarrow 42 scalars, Dual vector doublets $B_{\mu i} = A_{\mu i}$

Metrics
$$C_{\mu(ij)\nu} = -(h_{\mu\nu})_{ij}$$

Curvatures: $R_{21} = *R_{11}$, $R_{12} = R_{11}*$, $R_{22} = *R_{11}*$

$$h_{21} = \tilde{h}_{11}, \qquad h_{22} = \tilde{\tilde{h}}_{11}$$

Just h11 independent

SL(2,Z) on torus: (A1,A2) doublets, E-M duality Triplet h_{ij}: gravitational triality symmetry of free theory

5-D SYM at Strong Coupling

$$\{Q^a_{\alpha}, Q^b_{\beta}\} = \Omega^{ab} (\Gamma^{\mu} C)_{\alpha\beta} P_{\mu} + C_{\alpha\beta} (Z^{ab} + \Omega^{ab} K)$$

Z electric charges: carried by W-bosons etc YM instanton in R⁴ lifts to BPS soliton in 5-D K proportional to instanton number n, (2,0) short mult.

$$M \propto \frac{n}{g_{YM}^2}$$

Light at strong coupling: KK tower for 6'th dimension <u>Decompactifies</u> to (2,0) theory in 6D as $g_{YM}^2 \to \infty$

Witten, Rozali

(2,0) Interacting CFT

D=5 non-renormalizable, defined within string theory e.g. D4 brane theory Strong coupling limit defined within string theory e.g. multiple D4 branes \rightarrow multiple M5 branes No direct construction of interacting (2,0) theory. Reduce on T² gives interacting N=4 SYM and SL(2,Z) S-duality from torus diffeos

 $E(q_{YM})^2 \to \infty$

gym dimensionful. Limit is one to high energies

 $E >> (g_{YM})^{-2}$

SUGRA at Strong Coupling

$$\{Q^a_{\alpha}, Q^b_{\beta}\} = \Omega^{ab} (\Gamma^{\mu} C)_{\alpha\beta} P_{\mu} + C_{\alpha\beta} (Z^{ab} + \Omega^{ab} K)$$

If there are BPS states carrying K, with spectrum

$$M \propto \frac{n}{l_{Plank}}$$

Become light in strong coupling (high energy) limit $E \times l_{Plank} \to \infty$

Decompactification limit with K-states as a KK tower? If so, must decompactify to a (4,0) theory in 6D as (4,0) short multiplet

D=5 N=8 Superalgebra $\{Q^{a}_{\alpha}, Q^{b}_{\beta}\} = \Omega^{ab} (\Gamma^{\mu}C)_{\alpha\beta} P_{\mu} + C_{\alpha\beta} (Z^{ab} + \Omega^{ab}K)$

K carried by KK monopoles Gibbons & Perry Z^{ab} carried by charged 0-branes (from wrapped M-branes) BPS bound $M \ge |K|$

Full D=5 M-theory on S¹: No killing vectors, full KK tower etc Has E₇(Z) symmetry Includes duality $P^5 \leftrightarrow K$ D>5: D-5 form charge K carried by KK monopoles CMH

K-Charge in D=5

Spacetime M asymptotic to \bar{M} k asymptotic to Killing vector on \bar{M}

 $\Delta \omega = \omega - \bar{\omega}$

Difference in spin connections: Asymptotic tensor ADM Momentum for k: Integral at spatial infinity Σ^3

$$P[k] = \frac{1}{16\pi^2} \int_{\Sigma^3} *(e^A_{\wedge} e^B_{\wedge} k)_{\wedge} \Delta \omega_{AB} \qquad \text{Nestor}$$

Hull

K-charge

$$K = \frac{1}{16\pi^2} \int_{\Sigma^3} e^A_{\wedge} e^B_{\wedge} \Delta \omega_{AB}$$

K and NUT Charge

NUT Charge: Reduce on Killing vector N is magnetic charge for graviphoton in D=4

KK Monopole spacetime: (Taub-NUT)x(time) NUT charge N S¹ fibre, asymptotically radius R=|N|

K=RN=N|N|

Gravitational Instantons Carry K • Nx(time), N gravitational instanton

N Gibbons-Hawking multi-instanton space with general sources.

- Metric has Dirac string singularities in general, but connection well-defined
- If all charges are equal, singularities can be removed by identifying under discrete group: ALE or ALF instanton. But if not equal, singular.
- Should string singularities be allowed in quantum gravity? In M-theory? ALE boundary conds?

Symmetry of (4,0)

Free theory:

Conventional field theory in flat background Background diffeomorphisms + gauge trans

$$\delta C_{MNPQ} = \partial_{[M}\chi_{N]PQ} + \partial_{[P}\chi_{Q]MN} - 2\partial_{[M}\chi_{NPQ]}$$

Reduce to D=5 or D=4:Combine $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ 2 Symmetries are the same for $g_{\mu\nu}$

On T², background diffeos give SL(2,Z) S-duality of both spin-1 and spin-2 fields in D=4

Interacting D=6 theory:

Can't combine background η_{MN} & field C_{MNPQ}

Don't expect D=6 diffeos, but exotic symmetries that give D=5 diffeomorphisms

Without D=6 diffeomorphisms, no reason to expect SL(2,Z) and hence no "derivation" of gravitational S-duality (unlike free case)

Without D=6 diffeomorphisms, should spacetime be replaced by something more exotic? This should be consistent with free limit being a conventional field theory

(2,0) & (4,0) 6-D CFTs

- No local covariant interacting field theory
- D=5 BPS electric 0-branes and magnetic strings lift to self-dual strings in D=6. Tension to zero in conformal limit
- Large superconformal symmetry: (4,0) has 32+32 susys
- YM and graviton in D=5 lift to self-dual tensor gauge fields
- D=5 gYM & Iplanck from R6 as no scale in 6-D

M-Theory

- M-theory on T⁶ has D=5 N=8 SUGRA as low energy limit
- D=5 branes lift to self-dual strings in D=6.
 Tension to zero in strong coupling limit
- Is strong coupling limit a 6D theory with (4,0) SUSY, with exotic conformal gravity?
- Highly symmetric phase of M-theory?

Conclusions

- Dual gravitons and gravitational S-duality work well for free theory
- For D≥5, charge K carried by KK monopoles, and branes from D=4 instantons. Related to NUT charge and magnetic charge of KK monopoles
- For D=4 SYM or linearised SUGRA, Sduality from (2,0) or (4,0) theory on T²

(4,0): All Four Nothing?

- Key issue: spectrum of BPS states with K
- Extra dimension from strong coupling?
- (4,0) theory as a limit of M-theory?
 Vast symmetry and unusual features
- Not usual spacetime, no metric or diffeos
- Is (4,0) CFT a decoupling limit of (4,0) sector of M-theory? Big LST?