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Connect the statistical properties of
the distribution of mass on large scales

to the physics and the constituents of the universe
(pNG, DM/gravity properties, neutrino masses, DE,…)

Equal time correlation functions are particularly important

⇢n(x, t) = ⇢̄n(t)(1 + �n(x, t))

Large Scale Structure people’s mantra

h�k�k0i = (2⇡)3�(3)(k0 + k)P (k)

h�k1�k2�k3i = (2⇡)3�(3)(k1 + k2 + k3)B(k1, k2, k3)

…

density
contrast



CMB vs. LSS

Will get much more in future ! � ⇠ 1p
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We’ve already learned a lot thanks to CMB
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Euclid

Existing galaxy surveys:

Future surveys:

Existing surveys 
(biased sample)

Future surveys 
(biased sample)

DESI

Richard(Ba*ye(
Jodrell(Bank(Centre(for(Astrophysics,(University(of(Manchester(
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2013'MNRAS,'434,'1239'[arXiv:1209.0343]'
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Non-linearities come into play
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Large Scale Structures: basics

1) Initial distribution

1I) Time evolution:  Eulerian pressureless perfect fluid description

� random stochastic
variable

r2� = 4⇡Ga2⇢̄�

Poisson equation:

h�0(k)�0(k0)i = P0(k)�
(3)(k0 + k)
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1II) Fluctuations are small on large scales � ⌧ 1



Standard Perturbation Theory
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Performance of SPT loop expansion: UV

. N-body data, HR2

1 loop SPT

2 loop SPT

Linear
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Performance of SPT loop expansion: IR

N-body
1-loop SPT
linear
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What went wrong?

⇠(r) = h�(x)�(x+ r)i
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No effect!

Gradient in the flow

Uniform motion -

What went wrong? IR story 1
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rBAO

IR resummation 
needed !

What went wrong? IR story 2
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What went wrong? UV story 1

(c) MPA✓ SPT integrals are UV sensitive  
- large contribution from short modes,  
where fluid approx. breaks down        

✓ Halos are not taken into account     



What went wrong? UV story 2

(c) MPA
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EFT to rescue!

Baumann, Nicolis, Senatore, Zaldarriaga’ 2010
Carrasco, Hertzberg, Senatore’ 2012

…

describe dynamics of 
long-wavelength dofs  
through effective operators 



Recap: UV and IR issues have to be fixed

IR - eqs are OK, perturb. theory is wrong 

UV - complicated physics: non-linear back reaction 

Can we fix these issues while working directly with 
correlation functions (only they are of interest)?

Can there be a true QFT description?



Time - sliced perturbation theory (TSPT)

Time evolution of fields Time evolution of PDF

r2� = 4⇡Ga2⇢̄�

Liouville eqn. 

 SPT, EFT,…

Gaussian ICs:
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Perturbative solution for Gaussian i.c.
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TSPT diagrams
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Figure 1. Example of TSPT Feynman diagrams.

It is instructive to consider the tree-level expressions for the 3- and 4-point correlators.

Using the diagrams depicted in Fig. 1 one obtains,
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where “perm.” in the last expression stands for the terms obtained by the exchange
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. We observe that �̄
n

are identified as one-particle-irreducible (1PI)

contributions to the tree-level correlators with amputated external propagators.

As already noted above, the counterterms C
n

have the same order in the coupling g

as the 1-loop contributions. To understand their role, consider the 1-loop correction to the

– 11 –
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P1�loop

=

Gaussian integral:  Wick theorem + Feynman rules as in QFT

We solve exactly for  P(�, t) =
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R
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approach and their ’role’ is to reproduce eventually the SPT result. In order to further

renormalise the UV - behaviour and account properly for very short modes one has to

introduce new counter-terms for the �
n

vertices. This issue, however, is not the main

goal of this paper and will be addressed in detail elsewhere.

To make the connection with the SPT approach, i.e. to write TSPT as a series in

P

0

, it is very instructive to perform one - loop computation, to which we proceed now.

2.3.1 1-loop results and comparison with SPT

Let us now focus on the 1-loop PS (e.g. including next to leading order corrections

of P
0

). The field  used to be a generic field obeying (4) in the previous sections.

However, in order to switch to the familiar notation of SPT, it will be more convenient

to relabel this field as follows,
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which is validated by the fact the filed  has to be identified with the velocity divergence

field as far as cosmology is concerned. In this subsection we will be studying the power
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The first graph is simply the linear power spectrum. The e↵ect of the second diagram

with C

2

is to cancel spurious UV divergences (⇠ P

2

0

(k)⇤3

UV

) appearing in the third,

so-called ’sunrise’ diagram (see (B) for more details). misha:More on UV here?

8Note that one-loop tadpole graphs have been already taken care of, see (30).
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TSPT in a nutshell
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BAO IR - resummation

qi ! 0�smooth
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IR resummation

In TSPT large IR contributions can be systematically resummed

Step 1: smooth + wiggly decomposition

P (k) = Ps(k) + Pw(k) �(k) = �s(k) + �w(k)

Step 1I: identification of leading diagrams correcting the wiggly 
part            daisies

+ +++ + ...

a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT does not feature some of the spurious e↵ects present in higher-order

Lagrangian perturbation theory. Our main result is a systematic technique to identify

and resum enhanced infrared contributions a↵ecting the BAO peak. It admits a simple

diagrammatic representation within TSPT and allows to compute and assess higher-order

corrections in a systematic way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P is evolved from the initial time to

a finite redshift, and expressed in terms of a functional cumulant expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented by

a diagrammatic series, where the quadratic part of the cumulant represents a propagator,

and the higher cumulants n-point vertices �n. In [24] it has been shown that these vertices

are IR safe, i.e. free from spurious enhancements / k/q when one of the wavenumbers

becomes small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory contribution Pw. Then

the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is given by

�
3

(k, q, q0) ! �(k + q + q0)
k · q
q2

✓
Pw(k + q)� Pw(q)

Ps(k)2

◆
. (1.1)

In the limit q ! 0 the two power spectra in the enumerator tend to cancel the 1/q enhance-

ment from the vertex, as required by the equivalence principle. However, as emphasized

recently in [8], the Taylor expansion of Pw(k + q) becomes unreliable for kosc ⌧ q ⌧ k.

This means that non-linear corrections to the power spectrum at scale k receive large cor-

rections from IR modes q within this range. In this work we identify these contributions

for all �n vertices, and establish a power counting scheme to compute corrections to the

most enhanced terms. The leading contributions to the oscillatory part of the power spec-

trum are given by so-called daisy diagrams, and their resummation can be represented

diagrammatically in the following form (cf. Sec. 3 for details),
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P dressed
w =

IR resummation

In TSPT large IR contributions can be systematically resummed

Step 1: smooth + wiggly decomposition

P (k) = Ps(k) + Pw(k) �(k) = �s(k) + �w(k)

Step 1I: identification of leading diagrams correcting the wiggly 
part            daisies

+ +++ + ...

a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT does not feature some of the spurious e↵ects present in higher-order

Lagrangian perturbation theory. Our main result is a systematic technique to identify

and resum enhanced infrared contributions a↵ecting the BAO peak. It admits a simple

diagrammatic representation within TSPT and allows to compute and assess higher-order

corrections in a systematic way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P is evolved from the initial time to

a finite redshift, and expressed in terms of a functional cumulant expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented by

a diagrammatic series, where the quadratic part of the cumulant represents a propagator,

and the higher cumulants n-point vertices �n. In [24] it has been shown that these vertices

are IR safe, i.e. free from spurious enhancements / k/q when one of the wavenumbers

becomes small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory contribution Pw. Then

the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is given by
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P dressed
w =

Step II: identify enhanced diagrams

Step III: resumm them at a desired order of precision 

BAO wavelength
P (k) = Ps(k) + e�k2�2

LPw(k)

�2
L =

4�

3

� kL

0
dq Ps(q)

�
1� j0(qrs) + 2j2(qrs)

�

Baldauf et al. (2015)

Step III: add the smooth part

Step IV: compute to the desired order in hard loops using the 
dressed power spectrum

NB. Valid for any correlation function



IR - resummation in TSPT

Daisy graphs

= exp

(
� k2

3

· 4⇡
Z ⇤IR

0
dqPL

s (q)(1� j0(qrBAO) + 2j2(qrBAO))

)
Pw(k)

BAO scale

= e�⌃2k2

Pw(k)

a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT is free from the di�culties of higher-order Lagrangian perturbation

theory. Our main result is a systematic technique to identify and resum enhanced infrared

contributions a↵ecting the BAO feature. It admits a simple diagrammatic representation

within TSPT and allows to compute and assess higher-order corrections in a systematic

way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P for the perturbations is evolved

from the initial time to a finite redshift and expressed in terms of an expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented

by a diagrammatic series, where the quadratic cumulant represents a propagator, and the

higher cumulants — n-point vertices �n. In [24] it has been shown that these vertices are

IR safe, i.e. free from spurious enhancements / k/q when any of the wavenumbers become

small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory (‘wiggly’) contribution

Pw. Then the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is

given by
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k · q
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In the limit q ! 0 the di↵erence of the two power spectra in the numerator goes to zero

and cancels the 1/q enhancement from the vertex, as required by the equivalence principle.

However, as emphasized in [8], the Taylor expansion of Pw(|k+ q|) becomes unreliable for

kosc . q ⌧ k. This means that non-linear corrections to the correlation functions at scale

k receive large corrections from IR modes q within this range. In this work we identify

these contributions for all �n vertices, and establish a power counting scheme to compute

corrections to the most enhanced terms. The leading contributions to the oscillatory part

of the power spectrum are given by a set of ‘daisy’ diagrams, and their resummation is

represented diagrammatically in the following form (see Sec. 4 for details),

P IR res,LO
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DM correlation function in TSPT
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Short scales in TSPT

✓ path integral formulation allows for Wilsonian 
Renormalization and fixes the RG flow

Wilsonian/Polchinski RG:

At a shorter scale k
NL

the non-linear terms in the Vlasov chain become very strong,

such that one has to consider higher momenta of the Vlasov equation as a new degrees

of freedom. The dynamics at these scales is strongly coupled and cannot be accounted

perturbatively.

One can try to account for the modes in the range [⇤, k
NL

] along the lines of the

E↵ective field theory. At these scales one has the same degrees of freedom, but the non-

linear e↵ects are already strong and new operators in the Euler equation are generated.

It is useful to look at the theory we study from the point of view of particle physics.

Indeed, TSPT can be seen as a non-local euclidean e↵ective field theory of the field � whose

excitations can be seen as quasiparticels. We will call these quasiparticels galaxions. We

will now consider a low-energy e↵ective action for galaxions obtained by integration out

the UV modes,

e�W [�L] ⌘ N�1

Z
D�e�S[�]

���
k>⇤

= N�1

Z
D�

S

e�S[�S+�L] , (2.1) eq:W

where
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[dk]�(k)e�ik·x ,
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(x) =
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|k|>⇤

[dk]�(k)e�ik·x .

(2.2)

In the spirit of renormalisation group, we assume that the e↵ective propagator is cut

o↵ above ⇤,

P⇤(⌘; k) = P̄ (|k|)✓(⇤� k) =

(
P̄ (|k|), k < ⇤

0, k > ⇤
, (2.3)

and all the e↵ective vertices are ⇤ - dependent,

�
n

! �⇤
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. (2.4)

One starts from the following Wilsonian partition function,

Z[J ] =

Z
D⇥ exp
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Requiring that Z[J ] do not depend on the cuto↵ ⇤, we obtain the Polchinsky RG equations,
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Next we use the TSPT-Wilsonian e↵ective lagrangian,

L = �
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“Integration constants”: finite counterterms 
encapsulating effects of short scales

⇤

IR

UV

d

d log⇤
�

⇤
n = F(�⇤)

Cn(k1, ...,kn)

Z[J ] =
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D� exp
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2

¯P
�

1X

n=3
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n!

Z
�n�

n
+ J�

)

Step	1

Step	2

Step	3

Coarse grain fluctuations at scales smaller than ⇤�1

Renormalize interaction vertices to ensure that  
physical observables are independent of ⇤



Fit or not to fit?

Counterterms are unknown: match or measure (fit from data)
Summary   

LSS is emerging as the main observational probe for 
cosmology in the near future

analytic understanding of LSS in the mildly non-linear 
regime 20 Mpc < l < 100 Mpc is essential to fully 
exploit its potential

	TSPT	with	only	1	parameter	(at	1	loop)	
~	1%	fit	to	N-body	up	to		
~0.15	h/Mpc	both	PS	and	BS

Summary   

LSS is emerging as the main observational probe for 
cosmology in the near future

analytic understanding of LSS in the mildly non-linear 
regime 20 Mpc < l < 100 Mpc is essential to fully 
exploit its potential

EFT parameters are not fundamental: have to be marginalized over
Summary   

LSS is emerging as the main observational probe for 
cosmology in the near future

analytic understanding of LSS in the mildly non-linear 
regime 20 Mpc < l < 100 Mpc is essential to fully 
exploit its potential

In this case, the “cheapest” prescription is to introduce them
at the level of correlation functions, which TSPT does

Summary   

LSS is emerging as the main observational probe for 
cosmology in the near future

analytic understanding of LSS in the mildly non-linear 
regime 20 Mpc < l < 100 Mpc is essential to fully 
exploit its potential

How many parameters do we need in practice? Degeneracies?

to be understood in future…



P 1 loop, ren(k) = PL(k) + P 1 loop, SPT(k)� 2� k2PL(k)

Goodness of fit, 2-pt functions
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h�k1�k2�k3i = B(k1, k2, k3)

Data: Las Damas, Oriana
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TSPT Bispectrum: 0 parameter fit

SPT



h�k1�k2�k3i = B(k1, k2, k3)

TSPT

Data: Las Damas, Oriana
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Summary

LSS - key observable for future cosmology

TSPT:  QFT way to deal with mildly non-linear effects

IR effects are accounted for by systematic IR resummation

UV effects are accounted for by Wilsonian EFT

k-reach at first order ~ 0.15 h/Mpc 
~ 8 x more modes than SPT

percent accuracy for the BAO



Thank you for your attention!

Thank you for your attention !
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Examples
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Figure 1: The SPT contributions to the bispectrum in the squeezed (left) and equilateral (right) configu-
rations. The blue solid line denotes the Gaussian tree-level and one-loop contributions. The yellow, orange
and green lines denote the one loop non-Gaussian contribution for f

NL

= 1 for local, equilateral and quasi-
single-field PNG, respectively. The dashed purple line corresponds to our order-of-magnitude estimate for
the Gaussian two-loop correction B

332

. In the squeezed configurations (left), we chose k
L

= 0.012 hMpc�1.

3 Fisher analysis

In this section, we outline our method to forecast constraints on primordial non-Gaussianity. We
have in mind a Gedankenexperiment that provides us with the matter distribution in space and
time up to some maximal redshift. In this highly idealized scenario, we determine to what extent
our inability to analytically describe the non-linear gravitational collapse of matter limits the
information we can extract on primordial perturbations. We proceed along the lines of [6,7,26].
The outcome of the analysis for various surveys is presented in the next section.

3.1 Assumptions and approximations

For the convenience of the reader, we summarize the assumptions and approximations we make
in the Fisher analysis.

• We assume we are given an idealized survey of the late time dark matter density field,
instead of that of some biased tracer. This allows us to answer the question of whether
further progress is needed in the modeling of the dark matter distribution to strengthen
current bounds on PNG using upcoming LSS surveys.

• The idealized dark matter survey is characterized by a redshift range and the fraction of
the sky covered. We divide the survey in redshift bins, to which we assign a fixed time that
is equal to the mean redshift of the bin. Hence, we only need to know z

bin

to predict the
power spectrum and bispectrum. Observational redshift errors are neglected.

• We assume that each redshift bin can be approximated by a cube. Then we just need the
volume of the bin V (z

bin

) to account for cosmic variance.

• We compute correlation functions only within each bin. This does not seem to be a big
drawback in the case of equilateral PNG. Instead, for local PNG, this might cause an
unnecessary loss of information. We will discuss this issue elsewhere.

• We include shotnoise in the analysis to correctly remove weight from the higher redshift
bins. For this, we use the specifications of specific upcoming surveys. We discuss this in
section 4.1.2.

• We assume that the bispectra for di↵erent configurations are uncorrelated with each other.
This means that we approximate the bispectrum covariance matrix as diagonal. In [26]
it has been checked that this approximation works fine for the scales k  0.3hMpc�1 at
redshift zero. We assume it holds up to k  0.4hMpc�1, since for local PNG we still gain

6

PNG

Baldauf et al’16 
Welling at al’16  

Primordial
signal for

fNL = 1

1-loop 
bispectrum

Theory
Error

Audren et al’12
Baldauf et al’16  

Neutrino masses

spectrum realization corresponding to the same model. As illustrated in [22], the two

options lead to the same forecast errors, so for simplicity we assume an observed power

spectrum equal to the theoretical power spectrum of the fiducial model.
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Figure 1: Observable spectrum (top) and relative error on this spectrum (bottom), for the first
redshift bin (left) and last redshift bin (right) of a Euclid-like galaxy redshift survey. The quan-
tity displayed in the top is the galaxy power spectrum Pg(kref , µ, z) as a function of the fiducial
wavenumber k

ref

, for fixed redshift and perpendicularly to the line of sight (µ = 0), rescaled by the
inverse squared bias b(z)�2 and by a factor H(z)/DA(z)2: it is therefore a dimensionless quantity.
The upper plots show a comparison between a model with massless neutrinos and our fiducial model
(M⌫ = 3m⌫ = 0.21 eV). Solid lines are derived from the non-linear matter power spectrum using
the updated halofit version of ref. [24], while dashed lines are derived from the linear power spec-
trum. The lower plots show the part of the relative error coming from observational or theoretical
errors only (cosmic variance is included in the observational error). In these plots, the individual
1-� error on each data point has been rescaled by the square root of the number of points, in such
a way that the edges of the error bands correspond to a shift between theory and observation lead-
ing to ��2 = 1, when only the observational or theoretical error is incorporated in the likelihood
expression. In these lower plots, we also show for comparison the ratio between a massless model
and a model with the minimum total mass allowed by neutrino experiments, M⌫ = 0.05 eV.

We fit the mock and Euclid-like spectra using the MCMC code MontePython [27].

MontePython uses the Metropolis-Hastings algorithm like CosmoMC [28], but is in-

terfaced with class [29, 30] instead of camb [31], is written in python, and has extra

functionality; it will soon be released publicly, including the Euclid-like likelihood codes

– 4 –

�f loc

NL = O(1) �f equil
NL = O(10)�M⌫ = O(0.02 eV)

Planck: �M⌫ = O(0.1 eV) �f eq.
NL = O(50)�f loc.

NL = O(5)



Short scales in TSPT

✓ path integral formulation allows for Wilsonian 
Renormalization and fixes the RG flow

Wilsonian/Polchinski RG:

At a shorter scale k
NL

the non-linear terms in the Vlasov chain become very strong,

such that one has to consider higher momenta of the Vlasov equation as a new degrees

of freedom. The dynamics at these scales is strongly coupled and cannot be accounted

perturbatively.

One can try to account for the modes in the range [⇤, k
NL

] along the lines of the

E↵ective field theory. At these scales one has the same degrees of freedom, but the non-

linear e↵ects are already strong and new operators in the Euler equation are generated.

It is useful to look at the theory we study from the point of view of particle physics.

Indeed, TSPT can be seen as a non-local euclidean e↵ective field theory of the field � whose

excitations can be seen as quasiparticels. We will call these quasiparticels galaxions. We

will now consider a low-energy e↵ective action for galaxions obtained by integration out

the UV modes,

e�W [�L] ⌘ N�1

Z
D�e�S[�]
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(2.2)

In the spirit of renormalisation group, we assume that the e↵ective propagator is cut

o↵ above ⇤,
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, (2.3)

and all the e↵ective vertices are ⇤ - dependent,
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One starts from the following Wilsonian partition function,
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Requiring that Z[J ] do not depend on the cuto↵ ⇤, we obtain the Polchinsky RG equations,
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Next we use the TSPT-Wilsonian e↵ective lagrangian,
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Next we use the TSPT-Wilsonian e↵ective lagrangian,
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“Integration constants”: finite counterterms 
encapsulating effects of short scales
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