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We outline the most-studied classes of exact solutions 
to Vlasov-Maxwell equations for stationary neutral current q y
structures, which allow the particle distribution functions to 
be chosen at will (Physics - Uspekhi 59 (2016) 1165). ( y p ( ) )

A number of new analytical solutions are given. 



The Harris current sheet solution,1962
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Bennett pinch, 1934 (PDF of exponential type)Bennett pinch, 1934 (PDF of exponential type)
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Basic nonlinear equations describing stationary self-consistent q g y
current configurations in collisionless multicomponent plasma

The solutions are found via the method of integrals of particle motion and extend far
beyond the known generalizations of the non-relativistic Harris and Bennett models.

W t th li G d Sh f t ti hi h ll t l ti llWe come to the nonlinear Grad-Shafranov type equation which allows us to analytically
investigate and compare general properties of self-consistent structures: the ratio of
magnetic field energy to that of particles, the anisotropy of particle momentum distribution,
the spatial scales and profiles of particle density current and magnetic field etc

V.Ju. Martyanov, Vl.V. Kocharovsky, V.V. Kocharovsky, JETP 107, 1049 (2008);
Radiophys. Quant. Electr. 52, n. 2 (2009); Astronomy Lett. 36, 396 (2010);

the spatial scales and profiles of particle density, current and magnetic field, etc.

Phys. Rev. Lett. 104, 215002 (2010); Physics of Plasmas 22, 083303 (2015); 
Physics - Uspekhi 59 (2016) 1165.



Current sheet in Earth’s magnetosphereg p

Cluster data show a complicated structure of the current sheet



THEMIS P1 and P2 observations of the ion distribution functions in the despun
spacecraft coordinates (+x is Earthward, +y is dawnward, and +z is southward)
during the substorm event of 26 February 2008.



Multi-scale and asymmetric current sheets 
in the Earth magnetospherein the Earth magnetosphere

Runov et al., Annales Geophysicae, 24, 247, 2006; Artemyev et al., Annales
Geophysicae, 26, 2749, 2008; Zelenyi et al., Plasma Physics Reports, 37, 118, 2011.
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Current sheets and filaments in the solar corona:
Non-equilibrium particle distributions and variety of spatial profiles

Heliospheric
current sheetcurrent sheet



Current sheets in a pulsar wind nebula

a) Magnetic Geometry of a Force-Free Rotator for r < 2RL and i = 60, from Spitkovsky (2006). The rapid 
i i i li d li l fi ld f i b) f htransition to inclined split monopole field geometry for r > RL is apparent. b) Geometry of the current 

sheet from the split monopole model for i = 60, r > RL. For clarity, only one of the two spirally wound 
current sheets is shown. As i=90, the sheets almost completely enclose the star; for r>RL, the spirals are 
tightly wrapped and the current sheet surfaces closely approximate nested spheres. c) One sheet for i=30,tightly wrapped  and the current sheet surfaces closely approximate nested spheres. c) One sheet for i 30, 
shown for clarity. d) Meridional cross section of the current sheet for i = 60. e) Equatorial cross section 
snapshot of the current sheet, showing the two arm spiral form. The arrows show the local directions of 
the magnetic field; the dots and crosses show the direction of the current flow.



Relativistic shock model of Gamma-Ray Bursts
(an extremely non equilibrium collisionless plasma(an extremely non-equilibrium collisionless plasma 

with a long-living turbulent magnetic field)



How large is a set of self-consistent current sheets?
Quasistationary magnetic fields maintained by intrinsic currents in a collisionless plasma determine to
a large extent its kinetic, dynamic, and radiative properties. The energy distribution of particles may be
far from a Maxwellian one in different physical conditions prevailing in both, cosmic and laboratoryp y p g y
(including laser) plasmas. Despite the lack of quantitative data, results of in situ observations,
laboratory experiments, and numerical simulations have one thing in common: they all suggest the
existence of various long-lived current structures considerably different in terms of particle distribution
functions spatial configuration of the current density and magnetic fields produced by the currentfunctions, spatial configuration of the current density, and magnetic fields produced by the current.

Numerous publications report attempts to kinetically describe magnetostatic self-consistent
structures. Most of them refer to analytical studies, because numerical simulation does not provide an
approach to the solution to this complicated nonlinear problem. Unfortunately, many authors confine
themselves to considering a very limited set of anisotropic particle distributions (usually a shifted
Maxwellian distribution), which leaves only a narrow choice of spatial current density distributions.

The few studies that allow an arbitrary particle distribution over energies and/or arbitrary spatial
current profiles fail to provide a clear understanding of possible types of current structures; see e gcurrent profiles fail to provide a clear understanding of possible types of current structures; see, e.g.,

Tur A et al. J. Plasma Phys. 66 (2001) 97; Mottez F, Phys. Plasmas 10 (2003) 2501, 11 (2004) 336;
Balikhin M, Gedalin M, J. Plasma Phys. 74 (2008) 749; Ghosh A et al., Chaos 24 (2014) 013117.

A consistent analytical theory of neutral current structures in a collisionless plasma with arbitrary
energy distribution of particles has only recently attracted the serious attention of researchers, with the
most interesting results obtained by our method based on the invariants of particle motion.

The present talk is restricted mainly by the planar structures. We consider variety of current and
magnetic field profiles both localized and nonlocalized taking into account the complicated motion ofmagnetic field profiles, both localized and nonlocalized, taking into account the complicated motion of
trapped and transit particles and the inhomogeneity of the anisotropy of their distribution function.
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Collision of laser collisionless plasma jets





Current structures in relativistic collisionless shocks
(Numerical simulation, A.Spitkovsky, 2006)



Collisionless shock wave in e--e+ plasma

Keshet, Katz, Keshet, Katz, 
Spitkovsky, 
Waxman 
(2008)( )



3D Weibel instability in e- -e+ plasmay p

i fi ld d i f l f 1 % f h i d i

Fonseca Silva et al (2003)

Magnetic field energy density for values of 15% of the maximum energy density. 
Results are shown slightly before saturation and in the quasi-static stage (εB~ 1%).

Fonseca, Silva et al (2003).



N i l i l i f i f iNumerical simulations of magnetic structure formation
Particle-in-cell experiments in 2D and 3D

• A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).

Particle in cell experiments in 2D and 3D 

• L. Silva et al, ApJ 596, L121 (2003).
• F. Califano, D.D. Sarto, F. Pegoraro, PRL 96, 105008 (2006).
• K.-I. Nishikawa, C.B. Hededal et al., ApJ 642, n. 2, 1267 (2006).
• T.N. Kato, Phys. Plasmas 12, 080705 (2005).

A S itk k A J 673 1 L39 (2008) U K h t t l A J 693• A. Spitkovsky, ApJ 673, 1, L39 (2008); U. Keshet et al., ApJ 693, 
L127 (2009); A. Spitkovsky, L. Sironi, ApJ 698.2 (2009).

• Haugbolle ApJ Lett 739 L42 (2011)Haugbolle, ApJ Lett. 739, L42 (2011).
• H.-S. Park, D.D. Ryutov, J.S. Ross, High Energy Density Physics 

8, 38 (2012); 9, 192 (2013).
• E.V. Derishev, M.A. Garasev, MNRAS 461, 641 (2016).



Weibel instability and its saturation

Hi hl i t i l it di t ib ti t blHighly anisotropic velocity distributions are unstable 



Instability condition



Saturated magnetic field

General case (            or            )   
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Nonlinear evolution

• Quasineutrality
• Magnetic energy can approach equipartition
• Current filaments merge due to Ampère forceCurrent filaments merge due to Ampère force
• Spatial scale increases

Sl i fi ld d• Slow magnetic field decay
• Metastable configurationsg

Equal treatment of relativistic and non-relativistic plasma  



Analytical generalizations of Harris’ solution,
mainly based on modified Maxwellian distributionsmainly based on modified Maxwellian distributions

• Harris, 1962 and also on kappa distributions
• Fadeev et al., 1965
• Hoh, 1966
• Alpers 1969• Alpers, 1969
• Kan, 1973
• Channell, 1976

• Fu, Hau, 2005
• Yoon, Lui, 2006

V k 2013,
• Attico and Pegoraro, 1999
• Manakova et al., 2000

i h d hi l 2002

• Vasko, 2013

• Brittnacher and Whipple, 2002
• Schindler and Birn, 2002
• Mottez 2003• Mottez, 2003
• Yoon and Lui, 2005
• Zelenyi et al., 2006y ,
• Suzuki and Shigeyama, 2008
• Janaki, Dasgupta and Yoon, 2012, 2014 



Integrals of particle motionzz
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1D charged current structures with sheared magnetic field

component of the pressure tensori ei.e.,

Charge Shear
• Morozov, Soloviev, 1961
• Yoon, Lui, 2004, 2006
• Cremaschini et al 2010 2012

• Channell, 1976
• Mahajan, 2000

N ki h 2009• Cremaschini et al, 2010, 2012
• Tautz, Lerche, 2011

• Neukirch, 2009
• Ghosh, Janaki, Dasgupta, 2014



1D current sheets with sheared magnetic field

1D superposition of two current sheets with orthogonal currents
and cylindrically symmetrical particle distributions f (x)

, f (y)



Harris + Nicholson sheets 
bt i d b K 1972

Force-free Harris sheet 
d ib d b N ki h 2011as obtained by Kan,1972 as described by Neukirch, 2011



1D current sheets with sheared chaotic magnetic fields

Surface of section plots in the Ax–Ay plane at By=0 with parameter (rH / L)2 = 20, and 
energy E = 50.     [Ghosh et al. (2014)]



Towards finding an analytical solution for arbitrary PDF
G d Sh f ti d PDF d iti 1Grad-Shafranov equation and PDF decomposition 1

j

I i fi i b d f i h i id dIn practice, a finite number, d, of terms in the sum            is considered.



Grad-Shafranov equation and PDF decomposition 2q p

2 2

polynomial of order



Harmonic solution of nonlinear problem (d=2)



Double-scale current sheet
PDF is enriched with an exponential fraction which has a fast

U
jz

PDF is enriched with an exponential fraction which has a fast 
dependence on a vector potential Az

By

U0 x

Az Az

• Ratio of currents in the inner and outer layers are arbitrary.
• Particle spices in two layers may be different.p y y
• A thin layer is similar to the Harris sheet (PDF profile is unique 

everywhere), a thick layer is an arbitrary symmetric one.



Grad-Shafranov potential and variety of solutions
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Classification of the current sheetsClassification of the current sheets
There are three general situations (in the absence of an external 
magnetic field): The magnetic field By with x varying from -∞ to +∞
(i) alters sign any number of times, or (ii) changes it but once, or 
(iii) retains the same sign The corresponding classification is studied(iii) retains the same sign. The corresponding classification is studied 
in detail. It is summarized below.

(i) If the magnetic field alters sign more than once, the self-
i i i di h f i ( )consistent current structure is a periodic one. The function U(Az) 

serves as a “potential well”, the Az(x) represents oscillations (generally 
nonlinear) between two certain points in this well. At those “turningnonlinear) between two certain points in this well. At those turning 
points”, the magnetic field vanishes. 

The profiles of the magnetic field with different signs of By
b t th i i f h th Th t d itbetween them are mirror images of each other. The current density, 
which is proportional to the derivative of By with respect to x, is 
symmetric relative to any plane of a zero magnetic field.y y p g



d=6d 6              

d=10



d=3



d=4



Example of PDF as a sum of two exponential terms

can be close to +1 or -1.





(ii) If the magnetic field changes its sign only once, the 
point where it vanishes can be chosen as the origin of x;point where it vanishes can be chosen as the origin of x; 
By(x = 0) = 0. In the neighborhood of x = 0, the magnetic field is 
antisymmetric, By(x) = -By(-x), while the current density is y y
symmetric. In a whole, contrary to the magnetic field, the current 
density either keeps a constant sign or alternates a sign any even 
number of times if the profile of U(A ) is non-monotonic andnumber of times if the profile of U(Az) is non-monotonic and 
contains irregularities which, however, do not rise higher than 
U0 = U(Az(x = 0)) anywhere in the domain of Az

The behavior of the magnetic field and the current density 
on the sheet’s periphery at large values of x depends on the type 
of the Grad-Shafranov’s potential profile, i.e., on the nature of theof the Grad Shafranov s potential profile, i.e., on the nature of the 
anisotropy of the particle distribution. The current is localized and 
its total value may be arbitrary (finite or close to zero).



Generalized relativistic Harris current sheet (d=0, ζ≠0)
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Localized current sheet with PDF of hyperbolic type (d=-1)

Th l ti i i il t th H i d i d ib d b tiThe solution is similar to the Harris one and is described by an equation



Shielded current sheet (Taylor order d=3)

U

AA



Shielded current sheet (Taylor order d=3)



Shielded current sheet (Taylor order d=4)
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Kinetic features of self-consistent current structures
• L << rH    - most of the particles are not magnetically trapped (I << IA)

L >> th t i f d i l b t d ti l (I >> I )• L >> rH - the current is formed mainly by trapped particles (I >> IA)

Degree of anisotropy is bounded by Taylor order d:

Stability in the region where magnetic field vanishes:

P t b ti ith E ⊥ k || y b t bl f hi h hPerturbations with E ⊥ y, k || y can be unstable for high enough

For d=4 perturbations with E ⊥ y, k || y and with k ⊥ y, E || y are stable, if



Shielded current sheet (two exponent PDF)

It resembles Harris sheet but with decaying magnetic field B ~ 1/x

U j

It resembles Harris sheet, but with decaying magnetic field B  1/x

Aj

A B
x



Partially or completely shielded current sheets

All profiles are described analytically



Examples of PDF as a sum of two exponential terms





Bifurcated current sheet with two peaks 
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(iii) In the case when the magnetic field is of constant sign, 
the function U(A ) varies monotonically and the current density altersthe function U(Az) varies monotonically and the current density alters 
the sign at least once, while the total current of the structure is zero. 
If the range of Az is limited, the oscillator (i.e., Az) moves down from 

i (hill ) f h i h U d h h hill fa summit (hilltop) of a height U0 and then moves up another hill of 
the same height U0. In the generic case, the potential near both 
summits is approximately parabolic, the magnetic field and the pp y p , g
current density decline exponentially to zero as the distance from the 
sheet grows. 

If the e f A i li ited the te ti l U(A ) te d t UIf the range of Az is unlimited, the potential U(Az) tends to U0
when the Az goes to positive or negative infinity that cause a decrease 
of the magnetic field, while the current structure is asymmetrical —g y
with an exponential decline of the current density on the one side and 
a power-law decline on the other (not faster than x-2).











d=4

the double current sheet.



Pair of current sheets (d=4, ζ=0):



(iv) The case of an external magnetic field(iv)  The case of an external magnetic field

At one side of a current sheet, the screening of the 
l i fi ld b i l lexternal magnetic field may be partial or complete.



Boundary current sheetBoundary current sheet
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Current profile is similar to the Harris one, but PDF is different.



Asymmetric current sheets in external magnetic field
b d l ti l ith diff t t

U
N

jy

as a boundary layer separating plasmas with different parameters

U0

x
0

Ay

Nvacuum

x
0

A
-Bz isotropic plasmaAy

isotropic plasma

For maxwellian PDF the Grad-Shafranov potential is the followingFor maxwellian PDF, the Grad Shafranov potential is the following 



Boundary current sheets with step-functions in PDF
i=1 2
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Plasma is isotropic in the regions with homogeneous magnetic field

asymmetrically split current sheet



Cylindrical configurations (current filaments)

d 2 B l f tid = 2: Bessel function
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Cylindrically symmetric solutions (effective viscous damping) 

U U
oscillating isolatedg

U
A A

U U

A A
shieldedshielded



Classification of the current filaments
For the cylindrically symmetrical filaments with a purely azimuthal
magnetic field, the method of particle motion invariants admits only 
the following three qualitatively different types of the self-consistent 
structures.

I The first type assumes an unlimited value of the vectorI. The first type assumes an unlimited value of the vector 
potential Az. This implies that the Az is a monotonic function and the 
azimuthal component of the magnetic field is of the same sign for all 
values of the radial variable ρ. The current density may be sign-
changing, although the current through any circular area perpendicular 
to z with a center on z has the same sign. A total current can be eitherto z with a center on z has the same sign. A total current can be either 
finite or zero. The plasma can be localized near axis z, with its density 
exponentially vanishing with an increasing distance from the axis.



II In the second type the range of values of A is limited and itsII. In the second type, the range of values of Az is limited and its 
derivative with respect to ρ (the azimuthal component of magnetic field) 
changes sign a finite number of times. So, the “motion” of the oscillator 
(i.e., Az) in the Grad-Shafranov potential starts at ρ = 0 with sliding down 
the slope of the well and ends on a local summit or, in a degenerate case, at 
the point where the first two derivatives of U(A ) with respect to A vanishthe point where the first two derivatives of U(Az) with respect to Az vanish.

A bottom of the potential well cannot be reached in an infinitely slow 
monotonic manner since a general solution to the oscillator equation with a 

i f i i d i h h d id i l fviscous friction and a zero right-hand side is Az = c1 + c2·ln ρ. So, even for 
a completely flat bottom the motion is unlimited and the “friction” cannot 
stop the motion at a finite distance. Between the beginning and the end ofstop the motion at a finite distance. Between the beginning and the end of 
the motion, there could be a few reflections from the potential walls that are 
higher than the final summit. The total current is absent, the magnetic field 
d li f t th 1/ ith th i f I th l thdeclines faster than 1/ρ with the increase of ρ. In the general case, the 
summit (hilltop) on the vector potential's profile has a quadratic form. 
Hence, the magnetic field and the current density decline exponentially., g y p y



III. In the third type, the range of values of Az is limited, 
the A oscillates infinitely many times near the well's bottom withthe Az oscillates infinitely many times near the well s bottom with 
the increase of ρ. In a general case, as the amplitude of these 
oscillations decreases, the profile of the well's bottom can be 

i d b b l hi h i ld B l l iapproximated by a parabola, which yields a Bessel-type solution. 
The amplitudes of oscillations of Az, the magnetic field and the 
current density decrease as 1/ρ when ρ increases.y ρ ρ

In the case when the series expansion of the Grad-
Shafranov potential near the bottom starts with a term higher than 

d ti the i fi itel ill ti l e i t lth h theiquadratic, the infinitely many oscillations also exist, although their 
period grows with ρ. The resulting current configuration constitutes 
a finite or infinite collection of concentric current cylinders, among y g
which the ones on the outside have, as a rule, a larger value of the 
total current and a lower current density than the inside ones.



Shielded c rrent filament (Ta lor order d 3)Shielded current filament (Taylor order d=3)



Single current filament (Taylor order d = -1)

I = ∞I  



Generalized relativistic Bennett pinch

double-scale filament with small w=0.1

Limiting case of Bennett pinch with 
t l i th icurrent along a wire on the axis

I = (1-q)cA0. If q > 1, the latter is 
opposite to the pinch current, which isopposite to the pinch current, which is 
expelled from the axis area and 
localized in a hollow tube.



Shielded current filaments (Taylor order d=3, d=4)
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Two-dimensional current structures j(x,z)  (d=2)
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10 10 2D analytical models
F (A/A )2 exp(A/A ) (1+A/A )-k-1 :

0 0

F ~ (A/A0)2
, exp(A/A0) , (1+A/A0) k 1 :

• Walker, 1915
• Fadeev, 1965
• Kan 1973

-10 -10

• Kan, 1973
• Manankova, 2000
• Brittnacher, 2002
• Suzuki 2008-10 0 10 -10 0 10 Suzuki, 2008
• Vasko, 2013



Arbitrary PDF in a generalization of Harris current sheet



Two-dimensional Fadeev-like solution (exponential PDF)
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Conclusions
• Closed analytical forms of the nonlinear Grad-Shafranov equation obtained 
on the basis of several simple decompositions of particle distribution 
functions (PDFs) in collisionless relativistic multicomponent plasma.

• Exact solutions of magnetostatic Vlasov-Maxwell equations describing a 
broad variety of current sheets and filaments with arbitrary energy PDFs.

• Various properties of self-consistent current sheets and filaments, including 
magnetic energy content, gyroradius to thickness ratio, PDF anisotropy.

l i l d l f b d i i• a way to new analytical models of current structures observed in cosmic 
and laboratory plasmas as well as obtained in numerical simulations.



Some open problems
(1) How representative are distribution functions depending only on particle motion 

invariants compared with a variety of distribution functions describing all stationary self-
consistent current structures? How adequately do the first distributions represent qualitatively 
(physically) similar current structures described by more general particle distributions?

(2) What self-consistent current structures are most (or least) stable and what is the 
hierarchy of their instabilities? For which particle distribution is the structure with a given 

t d it fil t t bl ?current density profile most stable?
(3) To what degree do the classes of stationary current structures extend (or contract) under 

the effect of a magnetic field imposed, for example, across the current sheet and/or boundary 
conditions e g in prescribing the input and output particle flows at the borders of the currentconditions, e.g., in prescribing the input and output particle flows at the borders of the current 
structure?

(4) Is there a possibility of quasi-adiabatic (slow) deformation of current structures without 
their appreciable destruction and if yes under which conditions does it occur? Is it possible totheir appreciable destruction and, if yes, under which conditions does it occur? Is it possible to 
macroscopically describe any current structure deformation or their interaction with each 
other without a detailed analysis of PDF evolution?

(5) How do interparticle collisions quasi-stationary electric fields and higher-frequency(5) How do interparticle collisions, quasi stationary electric fields, and higher frequency 
electromagnetic fields influence self-consistent current structures? When does this influence 
result in their destruction or evolution of their macroscopic parameters without destruction, 
even if with a loss of energy content?gy


