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he most-studied classes of exact solutions
| equations for stationary neutral current

structures, which allow the particle distribution functions to
be chosen at will (Physics - Uspekhi 59 (2016) 1165).
A number of new analytical solutions are given.



The Harris current sheet solution, 1962

) ;"?\/T(.’.Ej Z) _pg — (p—y - meivei)g T pg
.](e:i — 579 €XP - —
’ (27rmE,iTE,i)=*/2 Zme,fiTe,fi
PDF of exponential type: B B=V xA

p, D, +qe’iA/c
Vector potential A=A(x)
B_=2kA tanh(kx)

V., V; = const
Ve/Te = V3T,
Ve
47 X
AA = —— €aNoa Va exp (e, Vo, A/CT,)
c

AQD =47 P, | P~ eXp(—GQO/ T) (1on’ frame of reference)
Balance of forces: e, F, =T,V N,

¢ ~ (0 and p = 0 in De Hoffmann-Teller’ frame of reference



Filament
geometry

j finite total current [

",2 2 ,_1‘1;1 ,
A=—24,In [1+”‘(‘T “")]. B= 0%

a(@® +y*) ] -
84,

_'T\'r — _'T\'r 1 J_
IT_chX[ + A,

- 84y +ap?’ Y J



Basic nonlinear equations describing stationary self-consistent
current configurations in collisionless multicomponent plasma
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The solutions are found via the method of integrals of particle motion and extend far
beyond the known generalizations of the non-relativistic Harris and Bennett models.

We come to the nonlinear Grad-Shafranov type equation which allows us to analytically
investigate and compare general properties of self-consistent structures: the ratio of
magnetic field energy to that of particles, the anisotropy of particle momentum distribution,
the spatial scales and profiles of particle density, current and magnetic field, etc.

V.Ju. Martyanov, VI.V. Kocharovsky, V.V. Kocharovsky, JETP 107, 1049 (2008);
Radiophys. Quant. Electr. 52, n. 2 (2009); Astronomy Lett. 36, 396 (2010);
Phys. Rev. Lett. 104, 215002 (2010); Physics of Plasmas 22, 083303 (2015);
Physics - Uspekhi 59 (2016) 1165.
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Current sheet in Earth’s magnetosphere

Cluster data show a complicated structure of the current sheet
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THEMIS P1 and P2 observations of the 1on distribution functions in the despun

spacecraft coordinates (+x 1s Earthward, +y 1s dawnward, and +z is southward)
during the substorm event of 26 February 2008.



Multi-scale and asymmetric current sheets

in the Earth magnetosphere
Runov et al., Annales Geophysicae, 24, 247, 2006, Artemyev et al., Annales

Geophysicae, 26, 2749, 2008; Zelenyi et al., Plasma Physics Reports, 37, 118, 2011.
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Current sheets and filaments 1in the solar corona:

Non-equilibrium particle distributions and variety of spatial profiles

Heliospheric
current sheet



Current sheets 1n a pulsar wind nebula
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a) Magnetic Geometry of a Force-Free Rotator for r < 2RL and i = 60, from Spitkovsky (2006). The rapid
transition to inclined split monopole field geometry for r > RL is apparent. b) Geometry of the current
sheet from the split monopole model for 1 = 60, r > RL. For clarity, only one of the two spirally wound
current sheets i1s shown. As 1=90, the sheets almost completely enclose the star; for r>RL, the spirals are
tightly wrapped and the current sheet surfaces closely approximate nested spheres. ¢) One sheet for i=30,
shown for clarity. d) Meridional cross section of the current sheet for 1 = 60. ) Equatorial cross section
snapshot of the current sheet, showing the two arm spiral form. The arrows show the local directions of
the magnetic field; the dots and crosses show the direction of the current flow.
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How large 1s a set of self-consistent current sheets?

Quasistationary magnetic fields maintained by intrinsic currents in a collisionless plasma determine to
a large extent its kinetic, dynamic, and radiative properties. The energy distribution of particles may be
far from a Maxwellian one in different physical conditions prevailing in both, cosmic and laboratory
(including laser) plasmas. Despite the lack of quantitative data, results of in situ observations,
laboratory experiments, and numerical simulations have one thing in common: they all suggest the
existence of various long-lived current structures considerably different in terms of particle distribution
functions, spatial configuration of the current density, and magnetic fields produced by the current.

Numerous publications report attempts to kinetically describe magnetostatic self-consistent
structures. Most of them refer to analytical studies, because numerical simulation does not provide an
approach to the solution to this complicated nonlinear problem. Unfortunately, many authors confine
themselves to considering a very limited set of anisotropic particle distributions (usually a shifted
Maxwellian distribution), which leaves only a narrow choice of spatial current density distributions.

The few studies that allow an arbitrary particle distribution over energies and/or arbitrary spatial
current profiles fail to provide a clear understanding of possible types of current structures; see, e.g.,

Tur A et al. J. Plasma Phys. 66 (2001) 97; Mottez F, Phys. Plasmas 10 (2003) 2501, 11 (2004) 336;
Balikhin M, Gedalin M, J. Plasma Phys. 74 (2008) 749; Ghosh A et al., Chaos 24 (2014) 013117.

A consistent analytical theory of neutral current structures in a collisionless plasma with arbitrary
energy distribution of particles has only recently attracted the serious attention of researchers, with the
most interesting results obtained by our method based on the invariants of particle motion.

The present talk is restricted mainly by the planar structures. We consider variety of current and
magnetic field profiles, both localized and nonlocalized, taking into account the complicated motion of
trapped and transit particles and the inhomogeneity of the anisotropy of their distribution function.



Figure 26. Typical plasma distribution (as a background) and magnetic
field lines (cross section) in the vicinity of the current sheet formed in the
force lines reconnection region (MRX facility, Princeton, www.pppl.gov)

Yoo Jetal. Phys. Rev. Lett. 113 095002 (2014) Ji H et al. Phys. Rev. Lett. 92 115001 (2004)



Collision of laser collisionless plasma jets
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Current structures 1n relativistic collisionless shocks

(Numerical simulation, A.Spitkovsky, 2006)




Collisionless shock wave 1n e-¢™ plasma
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3D Weibel 1nstability in e -e+ plasma
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Magnetic field energy density for values of 15% of the maximum energy density.
Results are shown slightly before saturation and in the quasi-static stage (eg~ 1%).

Fonseca, Silva et al (2003).



Numerical simulations of magnetic structure formation

Particle-in-cell experiments in 2D and 3D

A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).

L. Silva et al, ApJ 596, L121 (2003).

F. Califano, D.D. Sarto, F. Pegoraro, PRL 96, 105008 (2006).

o K.-I. Nishikawa, C.B. Hededal ef al., ApJ 642, n. 2, 1267 (2006).

« T.N. Kato, Phys. Plasmas 12, 080705 (2005).

* A. Spitkovsky, ApJ 673, 1, L39 (2008); U. Keshet ef al., ApJ 693,
L127 (2009); A. Spitkovsky, L. Sironi, ApJ 698.2 (2009).

« Haugbolle, ApJ Lett. 739, L42 (2011).

« H.-S. Park, D.D. Ryutov, J.S. Ross, High Energy Density Physics
8, 38 (2012); 9, 192 (2013).

« E.V. Derishev, M.A. Garasev, MNRAS 461, 641 (2016).



Weibel instability and its saturation
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Instability condition




Saturated magnetic field

General case (I' ~ kv or I' > kv)
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Nonlinear evolution

* Quasineutrality

* Magnetic energy can approach equipartition

* Current filaments merge due to Ampere force
* Spatial scale increases

« Slow magnetic field decay

* Metastable configurations

Equal treatment of relativistic and non-relativistic plasma

(B*/8m) < ((v — L)Nmc?)



Analytical generalizations of Harris’ solution,
mainly based on modified Maxwellian distributions

Harris, 1962 and also on kappa distributions
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Integrals of particle motion
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Special case of PDF: cylindrical symmetry, f = f(&, P,)




1D charged current structures with sheared magnetic field
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1D current sheets with sheared magnetic field
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Harris + Nicholson sheets
as obtained by Kan,1972
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1D current sheets with sheared chaotic magnetic fields
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Towards finding an analytical solution for arbitrary PDF
Grad-Shafranov equation and PDF decomposition 1
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In practice, a finite number, d, of terms in the sum Z 1s considered.



Grad-Shafranov equation and PDF decomposition 2
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Harmonic solution of nonlinear problem (d=2)
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Double-scale current sheet
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dependence on a vector potential A ;
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e Ratio of currents in the inner and outer layers are arbitrary.

e Particle spices in two layers may be different.

e A thin layer 1s similar to the Harris sheet (PDF profile 1s unique
everywhere), a thick layer 1s an arbitrary symmetric one.



Grad-Shafranov potential and variety of solutions A = 4 (x)
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Classi

There are three general situations (in the absence of an external
magnetic field): The magnetic field B, with x varying from -oo to +oo
(1) alters sign any number of times, or (11) changes it but once, or

(i11) retains the same sign. The corresponding classification is studied
in detail. It 1s summarized below.

(1) If the magnetic field alters sign more than once, the self-
consistent current structure 1s a periodic one. The function U(4,)
serves as a “potential well”, the 4_(x) represents oscillations (generally
nonlinear) between two certain points in this well. At those “turning
points”, the magnetic field vanishes.

The profiles of the magnetic field with different signs of B,
between them are mirror images of each other. The current density,
which is proportional to the derivative of B, with respect to x, 1s
symmetric relative to any plane of a zero magnetic field.
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Figure 9. Profiles of the anharmonic Grad Shafranov potential U and
coordinate dependences of 4., B,, and j.: (a) U x rl'f’ and (b) U .4_}“.



Figure 10. Typical protile of the anharmonic Grad Shafranov potential
(89) 1n the form of a cubic parabola and coordinate dependences of 4., B,,
and j- for the periodic solution at two different values of the first integral
Up.



d

Figure 11. Variants of the profile of the Grad Shafranov potential (89) in
the form of a bi-quadratic parabola and coordinate dependences of 4_, B,
and j- for periodic solutions.



Example of PDF as a sum of two exponential terms

The respective Grad—Shafranov potential takes the form

A, A,
U(A) = Wycosh (4—) — 2W; cosh (,,, 4“ ) (169)

Ay <A

and tends toward +oc as 4, — doc, suggesting the existence
of nonlinear periodic solutions. One of them can be written
down in elementary functions:

cos (v/ (W5 + 2Wy)/ Ag x)
VT4 2W /W3 ) |
4\/AgWrsin (\/(Wa + 2Wy)/Ap x)

| — (Wa/(Wa +2Wy)) cos® (\/(Wa + 2Wo) /Ao x)
(171)

A.(x) = 4Aartanh ( (170)

By(x) =

When W, < Wy, solutions (170), (171) are close to a
harmonic one: for Wy > W, the solution 1s strongly
anharmonic, because the argument of hyperbolic arctangent
can be close to +1 or -1.



Figure 18. The profile of the Grad Shafranov potential (169) and
coordinate dependences of 4., B, and j. for the anharmonic periodic
solutions (170), (171) at W5 = 2Wy (a). and W> = 6 W (b).



(i1) If the magnetic field changes its sign only once, the
point where it vanishes can be chosen as the origin of x;

B (x = 0) = 0. In the neighborhood of x = 0, the magnetic field is
antisymmetric, B (x) = -B,(-x), while the current density is
symmetric. In a whole, contrary to the magnetic field, the current
density either keeps a constant sign or alternates a sign any even
number of times if the profile of U(4,) 1s non-monotonic and
contains irregularities which, however, do not rise higher than

U, = U(A4,(x = 0)) anywhere in the domain of 4,

The behavior of the magnetic field and the current density
on the sheet’s periphery at large values of x depends on the type
of the Grad-Shafranov’s potential profile, 1.e., on the nature of the
anisotropy of the particle distribution. The current is localized and
its total value may be arbitrary (finite or close to zero).



Generalized relativistic Harris current sheet (d=0, (#0)
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Localized current sheet with PDF of hyperbolic type (d=-1)
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Shielded current sheet (Taylor order d=3)
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Shielded current sheet (Taylor order d=3)
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Shielded current sheet (Taylor order d
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Kinetic features of self-consistent current structures
* L <<ry - most of the particles are not magnetically trapped (I << 1)

 L>>1, - the current 1s formed mainly by trapped particles (/ >> 1)

(p3)

Degree of anisotropy 1s bounded by Taylor order d: )
1

<d

Stability in the region where magnetic field vanishes:
(p1)

Perturbations with E L y, k || Y can be unstable for high enough 02
Yy

For d=4 perturbations with E Ly, k|| y and with K Ly, E || y are stable, if

2 4 -
E - [f((‘,’ prfp—{—)/f(g )pdp > ()
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Shielded current sheet (two exponent PDF)
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Partially or completely shielded current sheets
A.

A.
U(A;) = Wyexp | — 2W5exp (137
A4
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Figure 14. Profile of the Grad Shafranov potential (137) for Wy > 0,
W, < 0 and coordinate dependences of A.. B,. and j. characteristic of:
(a) a partly screened current sheet, Uy > 0, and (b) a completely screened
current sheet, Uy = 0.

All profiles are described analytically



Examples of PDF as a sum of two exponential terms
A, A,

U(A.) = Wyexp 14“ - Whexp .
A A

Figure 17. The profile of the Grad Shafranov potential (137) for Wy > 0,
W5 > 0, w = 30 and coordinate dependences of 4., B,, and j. character-
istic of a nested current sheet. |
Noice, without going into the details of the resultant
solutions, thatif w > 1 or w < | and both quantities W and
W5 are positive, the current density profile can be a double-
scale one, 1.e., have the shape of current sheets of markedly
different thicknesses embedded within each other, so that
various kinds of 1ons make up current sheets of different
scales. The example of such embedding 1s presented in Fig. 17.
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Bifurcated current sheet with two peaks
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Figure 15. Profile of the Grad Shafranov potential (137) for Wy < 0,
W, > 0 and the coordinate dependences of 4., B,, and j. characteristic of
(a) the split current sheet with Uy close to H*’§ / Wy, and (b) the symmetric
transition sheet (from a homogeneous plasma to a vacuum with a uniform
magnetic field; N 1s the particle concentration) realized at Uy = sz /W.



(i11) In the case when the magnetic field is of constant sign,
the function U(A4,) varies monotonically and the current density alters
the sign at least once, while the total current of the structure 1s zero.
If the range of 4, 1s limited, the oscillator (i.e., 4,) moves down from
a summit (hilltop) of a height U, and then moves up another hill of
the same height U,,. In the generic case, the potential near both
summits 1s approximately parabolic, the magnetic field and the
current density decline exponentially to zero as the distance from the
sheet grows.

If the range of 4, 1s unlimited, the potential U(A4,) tends to U,
when the A, goes to positive or negative infinity that cause a decrease
of the magnetic field, while the current structure is asymmetrical —
with an exponential decline of the current density on the one side and
a power-law decline on the other (not faster than x-2).
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Figure 19. Grad-Shafranov potential (208), electron trajectories, and
profiles of the magnetic field, current density, and particle concentration

at the boundary of a uniform magnetic field and a two-beam plasma (at
Uy = 'f--"'max)-
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Figure 20. Grad-Shafranov potential (208), electron trajectories, and
profiles of the magnetic field, current density, and particle concentration
for a sheet with an antisymmetric magnetic field (for Uy < Upay)-
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Figure 21. Grad—Shafranov potential (208), electron trajectories, and
profiles of the magnetic field, current density, and particle concentration
for a sheet with a symmetric magnetic field (for Uy > Uy )-
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Figure 22. Grad—Shafranov potential, electron trajectories, and profiles of
the magnetic field, current density, and particle concentration for two
spatially separated fractions of particles (at Uy = Upax).



Figure 12. Profile of the Grad Shafranov potential U(A.) and coordinate
dependences of 4., B,. and /. characteristic of the double current sheet.
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he case of an external magnetic field
When the magnetic field does not change sign, the Grad—
Shafranov equation can be used to describe nonself-consis-
tent current structures located in the external magnetic field.
In this case, as x — 4oc, the magnetic field tends toward two,
generally speaking, different constants, with at least one of
them being nonzero, and at least one of the limits,
U(A, — —ox) or U(A, — +o¢), finite and smaller than U.
If U(A;) i1s everywhere smaller than Uy, while limits
U(A, — —o0) and U(A; — +oo) are equal, 1t suggests an
existence of a current structure localized in the external
uniform magnetic field, having zero total current. If U(A4:) 1s
everywhere smaller than Uy and the above limits are not
equal, then the current structure has nonzero total current.

At one side of a current sheet, the screening of the
external magnetic field may be partial or complete.
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Current profile is similar to the Harris one, but PDF 1s different.
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Asymmetric current sheets 1n external magnetic field
as a boundary layer separating plasmas with different parameters

U
A A
vacuum
0 P
B, ] ﬂopic plasma
cpy/e+ A
F = Fo(p)H ( y/A )
0

For maxwellian PDF, the Grad-Shafranov potential is the following
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Boundary current sheets with step-functions in PDF
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Cylindrical configurations (current filaments)
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Cylindrically symmetric solutions (effective viscous damping)
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Classification of the current filaments

For the cylindrically symmetrical filaments with a purely azimuthal
magnetic field, the method of particle motion invariants admits only
the following three qualitatively different types of the self-consistent
structures.

I. The first type assumes an unlimited value of the vector
potential 4_. This implies that the 4, 1s a monotonic function and the
azimuthal component of the magnetic field is of the same sign for all
values of the radial variable p. The current density may be sign-
changing, although the current through any circular area perpendicular
to z with a center on z has the same sign. A total current can be either
finite or zero. The plasma can be localized near axis z, with its density
exponentially vanishing with an increasing distance from the axis.



1T Tn the ceco

derivative with respect to p (the azimuthal component of magnetic field)
changes sign a finite number of times. So, the “motion” of the oscillator
(1.e., 4,) in the Grad-Shafranov potential starts at p = 0 with sliding down
the slope of the well and ends on a local summit or, in a degenerate case, at
the point where the first two derivatives of U(A,) with respect to A, vanish.

A bottom of the potential well cannot be reached in an infinitely slow
monotonic manner since a general solution to the oscillator equation with a
viscous friction and a zero right-hand side i1s 4, = ¢, + ¢,'In p. So, even for
a completely flat bottom the motion is unlimited and the “friction” cannot
stop the motion at a finite distance. Between the beginning and the end of
the motion, there could be a few reflections from the potential walls that are
higher than the final summit. The total current is absent, the magnetic field
declines faster than 1/p with the increase of p. In the general case, the
summit (hilltop) on the vector potential's profile has a quadratic form.
Hence, the magnetic field and the current density decline exponentially.



[I1. In the third type, the range of values of 4_ is limited,
the A_ oscillates infinitely many times near the well's bottom with
the increase of p. In a general case, as the amplitude of these
oscillations decreases, the profile of the well's bottom can be
approximated by a parabola, which yields a Bessel-type solution.
The amplitudes of oscillations of 4_, the magnetic field and the
current density decrease as 1/p when p increases.

In the case when the series expansion of the Grad-
Shafranov potential near the bottom starts with a term higher than
quadratic, the infinitely many oscillations also exist, although their
period grows with p. The resulting current configuration constitutes
a finite or infinite collection of concentric current cylinders, among
which the ones on the outside have, as a rule, a larger value of the
total current and a lower current density than the inside ones.



Shielded current filament (Taylor order d=3)
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Single current filament (Taylor order d = -1)
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Generalized relativistic Bennett pinch
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Shielded current filaments (Taylor order d=3, d=4)
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Two-dimensional current structures j(x,z) (d=2)
A=) Ajcos(k z cos + k ysint?,g + 1)
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Arbitrary PDF 1n a generalization of Harris current sheet
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Conclusions

* Closed analytical forms of the nonlinear Grad-Shafranov equation obtained
on the basis of several simple decompositions of particle distribution
functions (PDFs) in collisionless relativistic multicomponent plasma.

 Exact solutions of magnetostatic Vlasov-Maxwell equations describing a
broad variety of current sheets and filaments with arbitrary energy PDFs.

* Various properties of self-consistent current sheets and filaments, including
magnetic energy content, gyroradius to thickness ratio, PDF anisotropy.

« a way to new analytical models of current structures observed in cosmic
and laboratory plasmas as well as obtained in numerical simulations.



Some open problems

(1) How representative are distribution functions depending only on particle motion
invariants compared with a variety of distribution functions describing all stationary self-
consistent current structures? How adequately do the first distributions represent qualitatively
(physically) similar current structures described by more general particle distributions?

(2) What self-consistent current structures are most (or least) stable and what is the
hierarchy of their instabilities? For which particle distribution is the structure with a given
current density profile most stable?

(3) To what degree do the classes of stationary current structures extend (or contract) under
the effect of a magnetic field imposed, for example, across the current sheet and/or boundary
conditions, e.g., in prescribing the input and output particle flows at the borders of the current
structure?

(4) Is there a possibility of quasi-adiabatic (slow) deformation of current structures without
their appreciable destruction and, if yes, under which conditions does it occur? Is it possible to
macroscopically describe any current structure deformation or their interaction with each
other without a detailed analysis of PDF evolution?

(5) How do interparticle collisions, quasi-stationary electric fields, and higher-frequency
electromagnetic fields influence self-consistent current structures? When does this influence
result in their destruction or evolution of their macroscopic parameters without destruction,
even 1f with a loss of energy content?



