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Two related topics

e Particle acceleration in relativistic astrophysical plasmas
e Structure of pulsar winds (Crab Nebula)




High energy sources: non-thermal particles,
fast variability (= very fast acceleration)
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Crab Nebula: the paragon of high
energy sources




Part |I: The Crab Nebula we understand



Crab flares

e Few times per year The synchrotrozelimlt

eEc =neBc = ——— B*v?

e Random
e Flux increase by 40

e 100 MeV - 1GeV
e |asts for a day (<< dynamical fime)

~ 200n MeV
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e Shock acceleration is excluded Nearly monoenergetic!
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Flares from Crab Inner Knot?
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Crab Inner knot

Scales ~ 0.5 (light day)
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In the knot sigma is small!
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Polarization

1.0
1.0

0.8
0.8
0.6 0.6

0.4 SV

0.2

|
|
0.0 |
~1.0 -0.5 0.0 0.5 1.0




Inner knot: surface of relativistic shock

¢ L.ocation: The knot is on the same side of the pulsar as the Crab jet, along the
symmetry axis, on the opposite side as the brighter section of the Crab torus.

e Size: The knot size is comparable to its separation from the pulsar. Only
models with 0 < 1 agree

¢ Elongation: The knot is elongated in the direction perpendicular to the
symmetry axis. Only models with 0 < 1 agree

¢ Brightness peak: The observations indicate that the brightness peak is
shifted in the direction away from the pulsar.

¢ Polarization: The knot polarization degree is high, and the electric vector is
aligned with the symmetry axis.

* Luminosity: Taking into account Doppler beaming, the observed radiative
efficiency of the inner knot is fairly low << 1%.

* Variability: The knot flux is anticorrelated with its separation from the pulsar.

Not a sight of gamma-ray flares.



Pulsar winds: coming together of theory,
simulations and observations



Wind properties

e Knot: Thermal (1) spectrum, ¥,, = 3 X 10*

Porth +, 2017
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PIC simulations of termination
ShOCk in StriPEd Wind Sironi & Spitkovsky 2011
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Only relativistic shocks with sigma < 10-2
can accelerate non-thermal particles
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Large-scale torus structure

Komissarov & Lyutbarksy 2003

sigma <<1




Pulsar winds: coming together of theory,

simulations and observations  [seswiovios
Porth+ 2014
Sironi +, 2011
Lyutikov+, 2016
Yuan + 2016
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Conclusion 1

Ok, OK: We made an important progress in understanding pulsar winds




What about flares?

- Explosive reconnection and particle
acceleration in relativistic plasmas



Crab flares: very demanding
conditions on acceleration

e Acceleration by E ~ B (energy gain & loss on one gyro radius)
e on macroscopic scales >> skin depth

e qaccelerafion size ~ thousands skins

e qacceleration size ~0.1 -1 of the system size (in Crab)

 Few parficles are accelerated to radiation-reaction limif -
gamma ~ 107 for Crab flares (NOT all particles are
accelerated)

e Slow accumulation of magnetic energy, spontaneously
triggered dissipation
e (relativistic bulk motion)

Explosive Reconnection in relativistic plasmas



Dissipation in relativistic force-free
plasma: resistive tearing mode

e Noshocksin 0 = OO plasma
* Energy in B-field -> reconnection
e Resistive force-free

il =E;/n

 Formation of magnetic islands,
just like in non-relafivistic case
e Growth like in non-relat.:

[~ /7Ta

¢ Fast, but not fast enoughl
e Collisionless - fast on skin, slow
on macroscopic scales

L

Lyutikov 2003
Komissarov +, 2006




Large scale simulations

* Toroidally-dominated B-fields are unstable to large-scale
kinks

e Formation of current-tubes

e Parallel currents attract. Can flux merger be the source of
Crab flares?

]




2D force-free state with
. — constant

B = {—sin(ay), sin(ax), cos(ax) + cos(ay)} By (Atype of the “ABC” flow)

Is it stable?

-X-point

e Detailed investigation of stability using analytical, relativistic fluid-
type and PIC simulations (Lyutikov, + 2016)




Collapse of stressed magnetic X-
point in force-free plasma  (@asyrovatsky)

Dynamics force-free: [ay x
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1\ e explosive dynamics on Alfven time
slow initial evolution

e Starfing with smooth conditions

e Finite time singularity

e Driven by large-scale siresses




Theory, fluid and PIC simulations

Lyutikov +, 2017 JPP, submitted
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Can produce power-laws

PIC simulations by Sironi




Acceleration in X-point collapse:
charge starvation

 Highly efficient acceleration by E~B

e Driven by large scale magnetic stresses - wide-open X-
point (not like in fearing mode - flat X-point)

e Acceleration starts abrupftly, when reaching charge
starvation.

e During collapse current density grows

C BJ_ 2
J, =~ ym La(t)

e But J<2n e c-notenough particles to carry the current

4
curlB = —WJ + 0 E/c

* E-field grows 7 1

e Condition for charge starvation: a(t) > 5 o1/ (not too
demanding for Crab)

r




Collapse of an ABC system of
magnetic islands

Two stages
- Fast acceleration, not much B-
field dissipated (X-point collapse)
- Slower acceleration, dissipation
(island merger)
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Current attraction: two stages:
" “Free-fall’”’ and = slow-resistive’

Initial attraction due to large-scale

stresses
Quasi-steady (repulsion by the current
sheet) - slow resistive reconnection

Two stages of particle acceleration:
fast-impulsive and slow-resistive. i




Particles are accelerated by the
reconnecting E-field near X-point




7 dN/d7 ’ [Ne,tot]

The problem with gammamax

Average magnetic energy gamma ~ sigma

Need 107 - cannot accelerate all

Evidence for high energy bump, presumably generated at the X-point
collapse
Even for sigma ~ 100s, p ~ 1.5 can reach 107
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Merger of zero-current flux ropes

*No total current: no overall attraction force
First, resistive effects " eat out” the envelopes (slow)
eAfter ||-current learn of each other - large scale attraction



in Crab and AGNs?

Porth+ 2014

Komissarov & Lyutikov, 2011

Dissipation zone @ r < 1pc
(approximately where
) B, ~ B,




Conclusion 2

Reconnection in magnetically-dominated plasma
e can proceed explosively

o efficient particle acceleration

 reconnection can give p =1, alpha =0

e the explosive stage - X-point collapse - produces a
separate accelerated component

e is an important, perhaps dominant for some phenomena,
mechanism of particle acceleration in high energy
astrophysical sources.




