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Path integral formulation of quantum mechanics

Classical mechanical system P =⇒ quantum system (A,H, Ĥ)

A = algebra of observables

H = space of states

Ĥ = Hamiltonian, generates time evolution



Classical phase space P

ω = dp ∧ dq

S(trajectory) =

∫ B

A
pdq− H(p,q)dt



Classical phase space P

Classical equations of motion: Hamilton equations

δ

∫ B

A
pdq− H(p,q)dt = 0 =⇒

ṗ = −∂H
∂q

q̇ =
∂H

∂p



Classical phase space P, Hamilton equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p

! First order equations:
can fix A and B as Lagrangian submanifolds in P

ω|A = ω|B = 0, dim(A) = dim(B) =
1

2
dimP



Classical phase space P

Boundary conditions:

can fix A and B as Lagrangian submanifolds in P

Roughly as points in the configuration space X,
if P = T ∗X

Locally OK, globally interesting and complicated



Quantum picture

Lots of trajectories



Quantum picture

Sum
∑

i over all trajectories (pi ,qi )(t) in the classical phase space P



Quantum picture



Quantum picture



Quantum picture



Quantum picture

S(trajectory) =

∫
trajectory

pdq− H(p,q)dt



Quantum picture

Path integral shows that

Evolution operator Ut is a solution of the Schrödinger equation



Quantum picture

Path integral shows that

Evolution operator Ut is a solution of the Schrödinger equation

i~
∂Ut

∂t
= ĤUt



Quantum picture

Path integral shows that

Evolution operator Ut is a solution of the Schrödinger equation

i~
∂Ut

∂t
= ĤUt =⇒ Ut = exp

(
− it

~
Ĥ

)
we assume Ĥ is stationary, i.e. no explicit t-dependence



Quantum picture

We want to learn about the spectrum of Ĥ

Ĥ|ψi 〉 = Ei |ψi 〉

|ψi 〉 ∈ H – complete basis of the space of states



Quantum picture

Path integral helps

to learn about the spectrum of Ĥ

TrH UT =
∑

i

e−
iT
~ Ei



Quantum picture
Path integral helps

to learn about the spectrum of Ĥ∑
i

e−
iT
~ Ei = TrH UT =

∫
A∈X
〈A|UT |A〉



TrH UT =
∑

i

e−
iT
~ Ei =

∑
A∈X

∑
trajectories:A→A

e
iS
~



TrH UT =
∑

i

e−
iT
~ Ei =

∑
A∈X

∑
trajectories:A→A

e
iS
~



TrH UT =
∑

i

e−
iT
~ Ei

∑
A∈P

∑
trajectories:A→A

e
iS
~



Quantum picture

TrH UT =
∑

i

e−
iT
~ Ei

=

∫
p(0)=p(1),q(0)=q(1)

Dp(s)Dq(s) exp
i

~

∮
pdq− iT

~

∮ 1

0
H(p,q)ds



Nature of time



Nature of time



Nature of time

Deform the evolution operator UT 7→ e−
iτ Ĥ
~



Nature of time



Nature of time: Euclidean arrow of time points south!



So now we compute

TrH UE
T =

∑
i

e−
T
~ Ei

∑
A∈P

∑
trajectories:A→A

exp
i
∮

pdq− T
∮
H(p(s),q(s))ds

~

Same loops, different action



A textbook problem

Level splitting



Double well potential with symmetry x → −x

H(p, x) =
p2

2
+ U(x)



Double well potential

U(x) =
λ

4

(
x2 − x2

0

)2



Double well potential with symmetry x → −x

p = 0, x = −x0



Double well potential with symmetry x → −x

p = 0, x = +x0



Double well potential with symmetry x → −x



Classical energy levels



Classical energy levels

Classical life is doubly degenerate



From classical to quantum energy levels

Excitations correspond to the Bohr-Sommerfield orbits



From classical to quantum energy levels

Bohr-Sommerfield orbits:
∮
γL,R

pdx = 2π~Ni , Ni ∈ Z + . . .



From classical to quantum energy levels

Bohr-Sommerfield orbits:
∮
γL,R

pdx = 2π~Ni , Ni ∈ Z + . . .

The spectrum is doubly degenerate to all orders in ~ expansion



From classical to quantum energy levels

Ψ
(i)
± =

1√
2

(
Ψ

(i)
L ±Ψ

(i)
R

)
The spectrum is doubly degenerate to all orders in ~ expansion

E
(i)
+ − E

(i)
− = O(~∞)



Quantum energy levels

The spectrum cannot be doubly degenerate,
certainly not the ground state,

as Feynman’s variational method quickly shows



Feynman’s variational method quickly shows

Here, Ψ(x) ∝ ψ2(x0)ψ1(x)− ψ1(x0)ψ2(x)



The textbook solution



Textbook solution: compute

LimT→+∞〈−x0| UE
T |x0〉 ≈ e−TE

(0)
+ |Ψ(0)

+ (x0)|2 − e−TE
(0)
− |Ψ(0)

− (x0)|2

LimT→+∞〈x0| UE
T |x0〉 ≈ e−TE

(0)
+ |Ψ(0)

+ (x0)|2 + e−TE
(0)
− |Ψ(0)

− (x0)|2

Ψ±(x) = ±Ψ±(−x)



Textbook solution: compute for T →∞

〈−x0| UE
T |x0〉 =

∫
paths:x0→(−x0)

DpDx e
i
∫

pdx−
∫ T

0 H(p,x)dt

~

〈x0| UE
T |x0〉 =

∫
paths:x0→x0

DpDx e
i
∫

pdx−
∫ T

0 H(p,x)dt

~



Textbook solution: compute for small ~→ 0, T →∞

〈−x0| UE
T |x0〉 =

∫
paths:x0→(−x0)

DpDx e
i
∫

pdx−
∫ T

0 H(p,x)dt

~

〈x0| UE
T |x0〉 =

∫
paths:x0→x0

DpDx e
i
∫

pdx−
∫ T

0 H(p,x)dt

~



Textbook solution: ~→ 0 =⇒ saddle points for T →∞

δ

(
i

∫
pdx −

∫ T

0
H(p, x)dt

)
= 0

iẋ =
∂H

∂p

−iṗ =
∂H

∂x



Textbook solution: ~→ 0 =⇒ saddle points for T →∞

δ

(
i

∫
pdx −

∫ T/2

−T/2
H(p, x)dt

)
= 0

Hamilton equations with a twist, by 90 degrees

iẋ =
∂H

∂p
= p

−iṗ =
∂H

∂x
= U ′(x)

x(−T/2) = x0, x(T/2) = ±x0



Textbook solution: ~→ 0 =⇒ saddle points for T →∞

δ

(
i

∫
pdx −

∫ T/2

−T/2
H(p, x)dt

)
= 0

Hamilton equations with a twist, by 90 degrees

iẋ = p , −iṗ = U ′(x) =⇒ H(p, x) = const

x(−T/2) = x0, x(T/2) = ±x0



Textbook solution: ~→ 0 =⇒ saddle points for T →∞

Textbooks usually solve for p, and get

ẍ = U ′(x) =⇒ −1

2
(ẋ)2 + U(x) = const



Finite action saddle point for T =∞

”Energy” = −1

2
(ẋ)2 + U(x) = 0

Instanton: ẋ +
√

2U(x) = 0

x(−∞) = x0, x(+∞) = −x0



Finite action saddle point for T =∞

”Energy” = −1

2
(ẋ)2 + U(x) = 0

Anti-instanton: ẋ −
√

2U(x) = 0

x(−∞) = −x0, x(+∞) = +x0



And then the textbooks close in fast:
Superpose Instantons and Anti-Instantons

+ some reasonable estimates
of the effects of fluctuations one arrives at

E
(0)
+ − E

(0)
− ∝ e−2Si/~



Superpose Instantons and Anti-Instantons

+ some reasonable estimates
of the effects of fluctuations one arrives at

E
(0)
+ − E

(0)
− ∝ e−2Si/~

Si =

∫ x0

−x0

√
2U(x)dx , an instanton action



Superpose Instantons and Anti-Instantons

+ some reasonable estimates
of the effects of fluctuations one arrives at

E
(0)
+ − E

(0)
− = e−2Si/~ (1 + . . .)

loop expansion

Si =

∫ x0

−x0

√
2U(x)dx , an instanton action



With all due admiration to the authors of this method
A. Polyakov, S. Coleman, . . .

I have always been a little bit worried:

The I− I superposition is not a saddle point!



Superposition of Instantons and Anti-Instantons aka the instanton gas

is not a saddle point! Fluctuations contain tadpoles: δS 6= 0

Interpretation: tadpoles move us toward the true saddle points

A. Schwarz: ”Newton’s method” (E. Bogomolny’80)



Superposition of Instantons and Anti-Instantons aka the instanton gas

is not a saddle point! Fluctuations contain tadpoles: δS 6= 0

E. Bogomolny (1980) has improved this method: tadpoles as sources

S → S − 1

2
δS
(
δ2S
)−1

δS

=⇒ interaction potential of interaction between the I and I



Non-ideal instanton gas

is not a saddle point! Fluctuations contain tadpoles: δS 6= 0

But where are the true saddle points?

S → S − 1

2
δS
(
δ2S
)−1

δS − . . .

II→ II−
(
δ2S
)−1

δS − . . .→????



Change gears for a bit

Back to path integral

Z =

∫
Fields

[Dφ] e−
S(φ)
~



Topological renormalisation group

Well-known general idea: view the path integral

Z =

∫
F

[Dφ] e−
S(φ)
~

as a period:

Z =

∫
Γ

Ω~, Ω~ = [Dφ] e−
S(φ)
~

a middle-dimensional contour Γ ⊂ FC



Topological renormalisation group

The period does not change when the contour is deformed

Z =

∫
Γ

Ω~, Ω~ = [Dφ] e−
S(φ)
~

Optimal choice of the contour:
gradient flow for some hermitian metric h on FC

V = ∇h (Re(S/~))



Topological renormalisation group

The period does not change when the contour is deformed

Z =

∫
Γ

Ω~, Ω~ = [Dφ] e−
S(φ)
~

gradient flow for some hermitian metric h on FC

V = ∇h (Re(S/~))

Γ0 = F −→ Γt = etV (F)



Fixed points
of the topological renormalisation group

Γt −→ Γ∞ ∼
∑

a

na Ta



Complex saddle points for partition functions

Z =
∑

a

na

∫
Ta

Ω~,

Ta - Lefschetz thimbles (F. Pham’83)
emanating from the critical point ϕa

dS |ϕa = 0



Complex saddle points for partition functions

Z =
∑

a

na

∫
Ta

Ω~,

Ta - Lefschetz thimbles
emanating from the critical point ϕa

dS |ϕa = 0
A. Varchenko, A. Givental’82
F. Pham’83
V. Arnol’d-A. Varchenko-S. Gusein-Zade’83
S. Cecotti’91
S. Cecotti, C. Vafa’91
A. Losev, NN’93
A. Iqbal, K. Hori, C. Vafa’00
E. Witten’09



Path integral as period

The action in e−S/~

S = −i
∫
γ

pdq +

∫ 1

0
ds H(p(s),q(s))

The fields: F = LP
is the space of parametrized loops ϕ : S1 → P

ϕ(s) = ( p(s),q(s) ) ∈ P, ϕ(s + 1) = ϕ(s) .



Complexify the classical picture

• Complex phase space (PC, $C), $C = dpC ∧ dqC
• Holomorphic Darboux coordinates (pC,qC)



Now contour is in the complexified loop space



Contour in the complexified loop space



Complex Saddle Points: qualitative picture



Complex Saddle Points: qualitative picture

The complexified phase space is C2 ≈ R4 now



Complex Saddle Points: qualitative picture

The complexified energy level space is now an elliptic curve E ≈ T2



Complex Saddle Points: qualitative picture

Our old friends real energy levels are the real slices of that T2



Complex Saddle Points: qualitative picture



Complex Saddle Points: qualitative picture



Complex Saddle Points: qualitative picture

Instanton gas

Maps to piecewise linear paths on the torus:



Torus cycles: winding (3, 4)

This ↑↑↑ is not a critical point!



Torus cycles: winding (3, 4)

The gradient flow moves ↑↑↑ towards a critical point!



Torus cycles: winding (3, 4)

It moves . . .



Torus cycles: winding (3, 4)

And moves . . .



Torus cycles: winding (3, 4)

And moves . . .



Torus cycles: winding (3, 4)

And moves further down . . .



Torus cycles: winding (3, 4)

Until we reach the critical point



Where are the instantons?



Where are the instantons and anti-instantons?



What are the critical points ϕa’s in general?



With an additional assumption

of ”algebraic integrability”
PC fibers over BC ⊂ Cr



The complex critical points are :

rational windings on tori

T2r - complex tori (abelian varieties)



Two winding vectors

n,m ∈ Zr



Algebraic integrability :

action variables

ai =

∮
Ai

pdq , aD,i =

∮
B i

pdq

2r variables on r -dimensional space: non-independent

aDda = dF

F-prepotential of the effective low-energy N = 2 action



Algebraic integrability :

action variables

ai =

∮
Ai

pdq , aD,i =

∮
Bi

pdq

Well-defined on B̃C\Σ

Monodromy in Sp(2r ,Z)



Algebraic integrability :

action variables near degeneration locus Σ

Complex codimension 1 stratum: one vanishing cycle

a→ 0, aD =
1

2πi
a log(a) + . . .



Algebraic integrability :

Feature of complex angle variables:

Double periodicity∮
Ai

$j = δi
j ,

∮
B i

$j = τij =
∂2F

∂ai∂aj

φi ∼ φi + ni +
r∑

j=1

τijm
j , ni ,m

k ∈ Z



Now we can solve for the Complex Saddle Points

δS = 0 ⇔

i
dp

ds
= −∂H

∂q
, i

dq

ds
=
∂H

∂p



Now we can solve for the Complex Saddle Points

δS = 0 ⇔

i
dp

ds
= −∂H

∂q
, i

dq

ds
=
∂H

∂p
=⇒

the critical loop ϕa = [γ(s)] sits in a particular fiber T2r
b , b ∈ BC



Complex Saddle Points

Pass to action-angle variables

dφ

ds
= i

∂H

∂a
,

da

ds
= 0

=⇒

the critical loop ϕa = [γ(s)] sits in a particular fiber T2r
b , b ∈ BC

where the motion is a straight line in the angle variables

φ(s) = φ(0) + Ω s

Ω = i
∂H

∂a



Complex Saddle Points

Pass to action-angle variables

dφ

ds
= i

∂H

∂a
,

da

ds
= 0

=⇒

the critical loop ϕa = [γ(s)] sits in a particular fiber T2r
b , b ∈ BC

where the motion is a straight line in the angle variables

φ(s) = φ(0) + Ω s

Ω = i
∂H

∂a

The fiber b is fixed by φ(0) = φ(1) up to the periods

φ(1) = φ(0) + n + τ ·m



Superpotential for Complex Saddle Points

Ω = n + τ ·m = i
∂H

∂a

for some integer vectors n,m ∈ Zr

⇔ dWn,m = 0

Wn,m(b) = n · a(b) + m · aD(b)− H(b)

Well-defined on B̂C\Σ



Landau-Ginzburg description!
for integer vectors n,m ∈ Zr

dWn,m = 0

Wn,m(b) = n · a(b) + m · aD(b)− H(b)

Supersymmetric d = 2 N = 2 LG model



So, now we are facing the next question :

Where are the critical points of the superpotential Wn,m?



Picard-Lefschetz theory :

In the limit where T →∞ degeneration b → b∗

b∗ ∈ Σ

codimC = 1 stratum: one vanishing cycle

a ∼ T0(b − b∗)→ 0, aD ∼ 2Si +
1

2πi
a (log(a)− 1) + . . .

∂a

∂b
→ T0,

∂aD

∂b
∼ T0

2πi
log (T0(b − b∗)) + . . .

can make estimates . . .



Algebraic integrability
r = 1, one degree of freedom, examples

$ = dp ∧ dx , H = 1
2p

2 + U(x)

Mathieu, Heun, Higgs



Another curious quantum-mechanical example

Probe particle in a black hole background



Another curious quantum-mechanical example

Probe particle in a mass M Schwarzschild black hole background
Fixed energy E , fixed angular momentum L =⇒

elliptic curve in the complexified phase space(
L

r2

dr

dϕ

)2

= E 2 −
(

1− 2M

r

)(
1 +

L2

r2

)



Another curious quantum-mechanical example

Probe particle in a mass M Schwarzschild black hole background
Fixed energy E , fixed angular momentum L =⇒

elliptic curve in the complexified phase space(
L

r2

dr

dϕ

)2

= E 2 −
(

1− 2M

r

)(
1 +

L2

r2

)
p2 = E 2 − (1− 2Mz)

(
1 + z2

)
, dϕ = L

dz

p



In the limit T →∞
the elliptic curve (the energy level) degenerates

the action variables near degeneration locus Σ

a ∼ T0(b − b∗)→ 0, aD ∼ 2Si +
1

2πi
a (log(a)− 1) + . . .

iτ = m
∂a

∂b
+ n

∂aD

∂b
∼ mT0 +

nT0

2πi
log

(
b − b∗
b0

)
+ . . .



In the limit T →∞

the complex energy is thus fixed to be

E (b) ∼ bm,n = b∗ + b0e
− 2πim

n e
− 2πT

nT0 ,

Two quantum numbers!

n = 1, 2, . . ., and m = 0, 1, . . . , n − 1



In the limit T →∞

E (b) ∼ bm,n = b∗ + b0e
− 2πim

n e
− 2πT

nT0 ,

Two quantum numbers!

n = 1, 2, . . .,
and m = 0, 1, . . . , n − 1

For (m, n) = (0, 1) these are BI-ons of G.Dunne and M.Unsal’13-15
Also, G.Basar, R.Dabrowski, G.Dunne, M.Shifman, M.Unsal, . . .



In the limit T →∞

E (b) ∼ bm,n = b∗ + b0e
− 2πim

n e
− 2πT

nT0 ,

Two quantum numbers: emergent topology!
n = 1, 2, . . ., and m = 0, 1, . . . , n − 1

For (m, n) = (0, 1) these are BI-ons of G.Dunne and M.Unsal’13-15
Also, G.Dunne,R.Dabrowski, G.Basar, M.Unsal, M.Shifman, . . .



Complex energy In the limit T →∞

E (b) ∼ bm,n = b∗ + b0e
− 2πim

n e
− 2πT

nT0 ,

n ∈ Z+, 0 ≤ m < n



Complex energy In the limit T →∞

E (b) ∼ bm,n = b∗ + b0e
− 2πim

n e
− 2πT

nT0



Complex energy In the limit T →∞

E (b) ∼ bm,n = b∗ + b0e
− 2πim

n e
− 2πT

nT0



Fine structure of the saddle points



Fine structure of the saddle points



Where are the instantons now?



Where are the instantons/antiinstantons now?

Degenerate abelian variety. The solution requires T =∞.





Next steps

• Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to Ta



Next steps

• Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to Ta

• Non-zero modes: Evaluate the one-loop determinants



Next steps

• Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to Ta

• Non-zero modes: Evaluate the one-loop determinants
• Figure out relative phases of ϕa contributions (spectral flow)



Next steps

• Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to Ta

• Non-zero modes: Evaluate the one-loop determinants
• Relative phases of ϕa contributions:

the imprint of the “negative” modes
• Set up perturbation theory to include ~-corrections



Next steps

• Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to Ta

• Non-zero modes: Evaluate the one-loop determinants
• Relative phases of ϕa contributions:

the imprint of the “negative” modes
• Set up perturbation theory to include ~-corrections
• Recognize in the asymptotic nature of ~-expansion

the influence of different ϕa’s, e.g.
• in the poles of the Borel transforms



Resurgence

connects perturbative and non-perturbative physics



Resurgence connects perturbative and non-perturbative physics



Resurgence, perturbative/non-perturbative relations

J. Ecalle’81
A. Voros’81-04
F .Pham’83-97
A. Vainshtein’64
C. Bender and T. Wu’69
J.J. Duistermaat and V.W. Guillemin’75
L. Lipatov’77
B. Malgrange’79
M. Shifman, A. Vainshtein, V. Zakharov’83
E Bogomolny, J. Zinn-Justin’84
M.V. Berry and C.J. Howls’94
P. Argyres, M. Unsal’12
M. Kontsevich and Y. Soibelman’??



Resurgence



Origin of these ideas

Bethe/gauge correspondence

Gauge theories with N = (2, 2) d = 2 super-Poincare invariance

⇔

Quantum integrable systems

♦



QIS ≈ Bethe Ansatz soluble



Bethe/gauge correspondence
NN, S.Shatashvili, circa 2007

Supersymmetric vacua (in finite volume) of gauge theory

⇔

Stationary states of the QIS



Bethe/gauge correspondence

Equations for vacua from minimization of the effective potential

∂W̃(σ)

∂σi
= 2πini , i = 1, . . . , r

⇔

Bethe equations of the QIS



Quantum mechanics from 4d gauge theory

Four dimensional theories

e.g. N = 2 super-Yang-Mills theory in four dimensions

Viewed as two dimensional theories with SO(2) R-symmetry
rotations of two extra dimensions



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Viewed as two dimensional theory with SO(2) R-symmetry
Turn on the twisted mass for this symmetry =⇒ ~

NN, S.Shatashvili, 2009

Compactify the 1 + 1 dimensional spacetime on R× S1 (finite volume)



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto D~ × S1 × R1 (cigar × circle × time axis)

θ-angular coordinate on D~
With Ω-deformation along the cigar D = Dµφ −→ Dµφ+ ~Fµθ



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto D~ × S1 × R1 (cigar × circle × time axis)

With Ω-deformation along the cigar D

At low energy



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto D~ × S1 × R1 (cigar × circle × time axis)

×S1 × R1

at low energy ↓

×R1

Becomes 2d sigma model on R+ × R1



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto D~ × S1 × R1 (cigar × circle × time axis)

×S1 × R1

at low energy ↓

×R1

Becomes 2d sigma model on R+ × R1 =⇒ deformation quantization

NN, E.Witten’2009
Using A.Kapustin,D.Orlov’s branes’2003

introduced in 1978
by F. Bayen, L. Boutet de Monvel, M. Flato,
C. Fronsdal, A. Lichnerowicz et D. Sternheimer’78,
existence of formal def.quant. shown by M. Kontsevich in 1999
sigma model explored by A. Cattaneo and G. Felder’99



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

TrHqis
e−

1
~
∑

k τk Ĥk



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

TrHqis
e−

1
~
∑

k τk Ĥk = TrHvac e
− 1

~
∑

k τkOk

with τk the set of “times” - generalized Gibbs ensemble

with Ok the basis of the twisted chiral ring



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

TrHqis
e−

1
~
∑

k τk Ĥk = TrHvac e
− 1

~
∑

k τkOk = TrHvac (−1)F e−
1
~
∑

k τkOk

assuming all vacua are bosonic



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

TrHqis
e−

1
~
∑

k τk Ĥk = TrHvac (−1)F e−
1
~
∑

k τkOk =

= TrHgauge (−1)F e−
1
~
∑

k τkOk

using [Q,Ok ] = 0 and the usual Witten index argument



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

=

Partition function of the N = 2 gauge theory on T2 ×D

with Ω-deformation along D

Dµφ −→ Dµφ+ ~Fµθ

and 2-observables of Ok integrated along D

1

~
Ok =

∫
D

O
(2)
k

The latter description makes sense even when ~→ 0



Partition function of the quantum-mechanical system

=

susy Partition function of the N = 2 gauge theory

on T2 ×D∫
4d gauge superfields

e−
∫
T2×D

LSYM e
∑

k τk

∫
D
O

(2)
k

∼Donaldson’s surface-observables ↑↑↑ along D



Unification: effective superpotential
Claim: the N = 2 Landau-Ginzburg description

follows from N = 2 gauge theory!

Compactify the theory on large T2



N = 2 Landau-Ginzburg description
follows from low-energy effective N = 2 gauge theory!

Compactify the theory on large T2 (compared to ΛQCD scale)
take into account the electric n and magnetic m fluxes

go to extreme infrared

Seff =

∫
D

W
(2)
n,m + D− terms



N = 2 Landau-Ginzburg description
follows from low-energy effective N = 2 gauge theory!

Compactify the theory on large T2

take into account the electric n and magnetic m fluxes

Wn,m =
r∑

j=1

nja
j + mjaD,j − iτjuj

Losev, NN, Shatashvili’97, ’98, ’99, rigid N = 2, d = 2
Vafa, Taylor’99 τ = 0, noncompact CY3, N = 1, d = 4
Gukov,Vafa, Witten’99 τ = 0, CY4, N = 2, d = 2 sugra



From quantum mechanics to quantum field theory

What we have learned



From quantum mechanics to quantum field theory

From what we have learned it is clear, we should be looking for

Complex solutions of equations of motion

on spacetime of the form

S1
T ×Md



Complexify the phase space of the theory on Md

If we are lucky it will be an ∞-dimensional

algebraic integrable system



Complexify the phase space of the theory on Md

Even if we are unlucky we may still find

the complex energy levels to have non-trivial π1

=⇒ non-trivial critical points



Specific examples
CP1-model

S = R2

∫
Σ
d2σ ∂a~n · ∂a~n , ~n · ~n = 1, ~n ∈ R3



Specific examples
CP1-model

Now make ~n ∈ C3

Equations of motion read(
−∂∂̄ + u

)
~n = 0

u = ∂~n · ∂̄~n



CP1-model with ~n ∈ C3

Equations of motion:(
−∂∂̄ + u

)
~n = 0

T = ∂~n · ∂~n - holo (2, 0)-diff on Σ, ∂̄T = 0
T̃ = ∂̄~n · ∂̄~n - antiholo (0, 2)-diff on Σ, ∂T̃ = 0
u = ∂~n · ∂̄~n : consistent Schrodinger potential

I. Krichever, Σ = T 2,T = T̃ = 0, ’94



CP1-model with ~n ∈ C3

Equations of motion:(
−∂∂̄ + u

)
~n = 0

T = ∂~n · ∂~n - holo (2, 0)-diff on Σ, ∂̄T = 0
T̃ = ∂̄~n · ∂̄~n - antiholo (0, 2)-diff on Σ, ∂T̃ = 0

↑ Conservation laws



CP1-model with ~n ∈ C3

Equations of motion:(
−∂∂̄ + u

)
~n = 0

When Σ = T2, T = tdz2, T̃ = t̃d z̄2

z ∼ z + m + nτ

With some constants t, t̃ ∈ C



CP1-model with ~n ∈ C3

To exhibit the algebraic integrability
one defines an analytic curve C

so that its Jacobian (or Prym variety) is
abelian variety on which the motion linearizes



Fermi-surface curve

CFermi ⊂ C× × C×

(
−∂∂̄ + u(z , z̄)

)
ψ = 0,

Periodic potential: u(z + 1, z̄ + 1) = u(z + τ, z̄ + τ̄) = u(z , z̄)

Bloch boundary conditions

ψ(z + 1, z̄ + 1) = aψ(z , z̄),

ψ(z + τ, z̄ + τ̄) = b ψ(z , z̄)

Time evolution is hidden

In progress, with I. Krichever



SU(2)-gauge theory in 3 + 1



SU(2)-gauge theory in 3 + 1

put the theory on S1
T × S3

space



SU(2)-gauge theory on . . .

Impose rotational invariance!



Start with SU(2)-gauge theory on R1
T × R3

space

ds2 = dt2 + dr2 + r2dΩ2
2

Classical Yang-Mills is conformally invariant =⇒ AdS2 × S2

ds̃2 =
dt2 + dr2

r2
+ dΩ2

2

Cylindrical symmetric ansatz (space SO(3) locked with color SU(2))



Start with SU(2)-gauge theory on R1
T × R3

space

ds2 = dt2 + dr2 + r2dΩ2
2

Classical Yang-Mills is conformally invariant =⇒ AdS2 × S2

ds̃2 =
dt2 + dr2

r2
+ dΩ2

2

↗
Cylindrical symmetric ansatz (space SO(3) locked with internal SU(2))



SU(2)-gauge theory on R1
T × R3

space

Cylindrical symmetric ansatz, n̂ ∈ S2

cf. L. Faddeev, A. Niemi’99, n̂ dynamical

A = σ̂ · n̂ a + (1 + φ2)n̂ · (σ̂ × dn̂) + φ1σ̂ · dn̂

S2-dependence drops
We are left with

the U(1) gauge field a
a complex scalar φ = φ1 + iφ2

On AdS2 spacetime

SYM →
∫

AdS2

da ∧ ?da + Daφ ∧ ?Daφ̄+
√
g
(
1− |φ|2

)2

Witten’78



In our case: SU(2)-gauge theory on S1
T × S3

space

ds2 = dt2 + R2
(
dθ2 + cos(θ)2dΩ2

2

)
Classical Yang-Mills is conformally invariant =⇒ AdS2 × S2

ds̃2 =
d(t/R)2 + dθ2

cos(θ)2
+ dΩ2

2



In our case: SU(2)-gauge theory on S1
T × S3

space

We can again use the cylindrical symmetric ansatz
Again the S2-dependence drops

Again we are left with
the U(1) gauge field a and a complex scalar φ = φ1 + iφ2

On AdS2

Global identifications are now different. . .
Similarity to the anharmonic oscillator looks promising. . .

. . . to be continued



String theory?

Complex saddle points: non-unitary 2d CFT’s
RG flows in the space of complexified couplings

Lefschetz thimbles?
Proper framework for theories with complex cL, cR central charges?

4d N = 2 gauge theories! again



Remark on space-time dimensionality and susy

We saw that non-supersymmetric quantum mechanics, i.e. 0 + 1 theory
when subject to the full analytic continuation in all couplings



Remark on space-time dimensionality and susy

We saw that non-supersymmetric quantum mechanics, i.e. 0 + 1 theory
when subject to the full analytic continuation in all couplings

Embeds naturally into a supersymmetric gauge theory in 3 + 1 dimensions



Remark on space-time dimensionality and susy

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions

subject to the full analytic continuation in all couplings?



Remark on space-time dimensionality and supersymmetry

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions

subject to the full analytic continuation in all couplings?

Some gauge(?) theory in 6 + 1?



Remark on space-time dimensionality and susy

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions

subject to the full analytic continuation in all couplings?

Chern-Simons theory of the (2, 0) superconformal theory in six dimensions?



Remark on space-time dimensionality and susy

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions

subject to the full analytic continuation in all couplings?

Chern-Simons theory of the (2, 0) superconformal theory in six dimensions?

Could the supersymmetry in the bulk
nearly cancel the cosmological constant

without affecting the Einstein gravity in our
effectively 3 + 1 dimensions?



THANK YOU


