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Path integral formulation of quantum mechanics

~

Classical mechanical system P => quantum system (A, H, H)

A = algebra of observables
H = space of states

H = Hamiltonian, generates time evolution



Classical phase space

w=dpAdq

/

classical trajectory = solution of 85 = 0

B
S(trajectory) = / pdq — H(p, q)dt
A



Classical phase space P

Classical equations of motion: Hamilton equations

B
6/ pdq — H(p,q)dt = 0 =
A



Classical phase space ?, Hamilton equations

oH . H
Jq qi@p

| First order equations:
can fix A and B as Lagrangian submanifolds in P

endpoints on Lagrangians
are fixed by dynamics

still the classical trajectory

1
wla=w|g =0, dim(A) = dim(B) = Edim(P



Classical phase space P

Boundary conditions:

can fix A and B as Lagrangian submanifolds in P

still the classical trajectory

Roughly as points in the configuration space X,
if P=T*X

Locally OK, globally interesting and complicated



Quantum picture

Lots of trajectories



Quantum picture

A

Sum ) over all trajectories (p;, q;)(t) in the classical phase space P



Quantum picture

iS

<B|evolution operator|A> = i eh

trajectories
connecting

A—>B



Quantum picture

iS

<B|evolution operator|A> = i eh
/ trajectories
connecting

amplitude
A—>B



Quantum picture

is
Probability(A —> B) = z eh

trajectories
connecting

amplitude
A —9 B




Quantum picture

iS
<B|evolution operator|A> = i eh

trajectories
connecting

amplitude
A—B

S(trajectory) = / pdq — H(p, q)dt

trajectory



Quantum picture
Path integral shows that

Evolution operator Uy is a solution of the Schrodinger equation



Quantum picture
Path integral shows that

Evolution operator Uy is a solution of the Schrodinger equation

oU; ~
ih— = HU
ot t



Quantum picture
Path integral shows that

Evolution operator U, is a solution of the Schrédinger equation

L ouU ~ it ~
lha—tf = HUy = Uy = exp (—hH>

we assume H is stationary, i.e. no explicit t-dependence



Quantum picture

We want to learn about the spectrum of H

Hlwi) = Eil:)

[1;) € H — complete basis of the space of states



Quantum picture
Path integral helps

to learn about the spectrum of H

iTE
TrecUr = Z e~ nki
i



Quantum picture
Path integral helps

to learn about the spectrum of H

N e tE =Ty Ur = / (AlUT|A)



Trg{UT—Ze h’—z Z e%

AcX trajectories:A—A

phase space

p.g

loops relative A



Tree U = Ze_%E’ = Z Z e

A€X trajectories:A—A

phase space

p.g

added piece to make a loop



_iTE.
Tree U = E e n™!

>y

A€e?P trajectories:A—A

phase space

p.a

loops



Quantum picture
_iTF.
Tree U = Z e ™
i

phase space
P.q

loops

- / Dp(s)Dq(s) exp ;%pdq - % f; H(p,q)ds

p(0)=p(1),a(0)=qa(1)



Nature of time
/N
[t

endpoint

>—>
starting point Minkowski time




Nature of time

Euclidean time

/N
[t

endpoint

N

starting point /Minkowski time




Nature of time

Euclidean time

/N
[t

endpoint

T

N
starting point /Minkowski time

-
“‘b

Deform the evolution operator Ut +— e~



Nature of time

The phase space

endpoint

starting point = T
Minkowski time



Nature of time: Euclidean arrow of time points south!

Euclidean tjme The phase space
t
starting point
endpoint



So now we compute

_TE
T UF =D e nh

1

Z Z exp if pdq - Tf;’(P(S),q(S))ds

Ae? trajectories:A—A

phase space
pa

loops

Same loops, different action



A textbook problem

Level splitting

(O @ (=»

«E»

Q>




Double well potential with symmetry x — —x
ANV




Double well potential
U(x)
/N

N




Double well potential with symmetry x — —x
U(x)
N

N

left vacuum

p:O7X:_XO



Double well potential with symmetry x — —x
U(x)
N

N

right vacuum

P:O,X:+X0



Double well potential with symmetry x — —x
U(x)
/N

N

left excitations right excitations




Classical energy levels
/]

2

N P

classical vacua

constant energy level
H(plx) =E




Classical energy levels
NP

2

two components
of the energy level
1 H(px) = E

A 4
t

Classical life is doubly degenerate



From classical to quantum energy levels
N P

Excitations correspond to the Bohr-Sommerfield orbits



From classical to quantum energy levels
N P

Bohr-Sommerfield orbits: 55% o pdx =2mhN;, N; € 7+ ...



From classical to quantum energy levels
N P

Bohr-Sommerfield orbits: f pdx = 2whN;, N; € 7 + .
The spectrum is doubly degenerate to all orders in A expansion



From classical to quantum energy levels

NP
T B 4 \
// AN PVA
s Sl
§t o IL\)

s

v = % (v + i)

The spectrum is doubly degenerate to all orders in ki expansion

eV — Y = o(n)



Quantum energy levels

The spectrum cannot be doubly degenerate,
certainly not the ground state,
as Feynman's variational method quickly shows



Feynman'’s variational method quickly shows

—\I,(X) I‘\i/(x)

E = <¥|H|¥> s I‘I’"I’*' + UxX)¥v*
N , =
A
7z

Vv

Here, W(x) o< 12(x0)11(x) — ¥1(x0)¢2(x)



The textbook solution

«O>r «Fr «=>»

«E)»

DA




Textbook solution: compute

) _ _ 7(0) 0
Lim 7 4oo(—x0| UE [50) ~ e TEY (WO (x0) ]2 — &= TEV w0 () 2

. = (V) =)
Lim7 400 (x0] U [50) 2 7T [0 (x0) 2 + 7 TE (W0 (x0) 2

Vy(x)=+Vi(—x)



Textbook solution: compute for T — oo

i [ pdx— [ H(p,x)dt
(=0l UE o) = [ e

paths:xg—(—xo)

i [ pdx— [y H(p,x)dt
(x| UE ]XO)—/ DpDx e i

paths:xp—xp



Textbook solution: compute for small i — 0, T — o

if de,fT H(p,x)dt
(—xo| UE |x0) = / DpDxe~ —h

paths:xg—(—xo)
if pdx—fOT H(p,x)dt
h

(x0| UE |x0) _/ DpDx e

paths:xp—xp



Textbook solution: A — 0 = saddle points for T — oo

5 <i/pdx—/oTH(p,x)dt> 0
OH

.. OH
—p= —
P~ ox



Textbook solution: A — 0 = saddle points for T — oo

(e [ o)

Hamilton equations with a twist, by 90 degrees

P oH

1 = —_—=

op P
—ip = zH =U'(x)



Textbook solution: A — 0 => saddle points for T — oo

T/2
/pdx / =0
T/2
Hamilton equations with a twist, by 90 degrees

ix=p, —ip=U'(x) = H(p.x) — const

x(=T/2) = x, x(T/2) =+xo



Textbook solution: A — 0 = saddle points for T — oo

Textbooks usually solve for p, and get

x=U(x) = —%(X)z + U(x) = const

A v

v




Finite action saddle point for T = co

1
"Energy” = (x)” + U(x) =0

2

Instanton: x +
x(—00) = xp,

/

V2U(x)=0
x(400) = —x0

A -Ux)

A\



Finite action saddle point for T = co

1
" Energy” = 75().()2 +U(x)=0
Anti-instanton: x — 1/2U(x) =0

x(—00) = —xo, x(+00) = +x0

A VX




And then the textbooks close in fast:

Superpose Instantons and Anti-Instantons
ANX

exponentially accurate

-4 ‘lr Y

+ some reasonable estimates
of the effects of fluctuations one arrives at

A4

E-(i-O) o E(O) x efZSi/h



Superpose Instantons and Anti-Instantons

exponentially accurate

71

r— | "time"

=]

X0
S = Vv 2U(x)dx,

!

N

+ some reasonable estimates
of the effects of fluctuations one arrives at

—X0

o—2Si/h

an instanton action

N\



Superpose Instantons and Anti-Instantons

exponentially accurate

7—1

r | "time"

st

loop expansion

X0
S = V2U(x)dx,

!

h

+ some reasonable estimates
of the effects of fluctuations one arrives at

—Xo

EQ O = 25/ (14 )

an instanton action

A4



With all due admiration to the authors of this method

A. Polyakov, S. Coleman, ...

| have always been a little bit worried:
ANX

exponentially accurate

-4 \lf A

A4

The J — J superposition is not a saddle point!



Superposition of Instantons and Anti-Instantons aka the instanton gas

x

exponentially accurate

e l

is not a saddle point! Fluctuations contain tadpoles: §S # 0

Interpretation: tadpoles move us toward the true saddle points

A. Schwarz: ”Newton's method” (E. Bogomolny’80)



Superposition of Instantons and Anti-Instantons aka the instanton gas

W X
exponentially accurate

7“ A1 e
] l

is not a saddle point! Fluctuations contain tadpoles: S # 0

E. Bogomolny (1980) has improved this method: tadpoles as sources
1 2 —1
5—>5—§(55(55) 0S

— interaction potential of interaction between the J and J



Non-ideal instanton gas

exponentially accurate

e l

is not a saddle point! Fluctuations contain tadpoles: 4S5 # 0

But where are the true saddle points?
5%5—%55(525)‘155—...

79 — 97— (52S) 1 6S — ... 777



Change gears for a bit

Back to path integral

S(9)

Z = . D TR
/Srields [ (/5] ©




Topological renormalisation group

Well-known general idea: view the path integral
5(¢)
Z= / [Dg] e
JF

as a period:

_5(9)
Z:/Qh, Qh:[ng] e n
r

a middle-dimensional contour I © €



Topological renormalisation group

The period does not change when the contour is deformed

Z:/Qh, Q, = [D] e H
r

Optimal choice of the contour:
gradient flow for some hermitian metric h on F€

V = V" (Re(S/h))



Topological renormalisation group

The period does not change when the contour is deformed
_5(9)
Z= | Q, Qp=[D¢] e n
r

gradient flow for some hermitian metric h on F€

V = V" (Re(S/h))

fo=F — T =e"(9)



Fixed points
of the topological renormalisation group

e — T~ mT,
a

“

T

W




Complex saddle points for partition functions

2:; Na /Tth’

Ta - Lefschetz thimbles (F. Pham'83)
emanating from the critical point @,
dS|,, =0




Complex saddle points for partition functions

Z:Z na/Qh,
a a

T, - Lefschetz thimbles

emanating from the critical point ¢,
ds‘@a =0

A. Varchenko, A. Givental'82

F. Pham’83

V. Arnol'd-A. Varchenko-S. Gusein-Zade'83
S. Cecotti'91

S. Cecotti, C. Vafa'91

A. Losev, NN'93

A. Igbal, K. Hori, C. Vafa’'00

E. Witten'09



Path integral as period

The action in e=5/%

1
5= / pda + /0 ds H(p(s), a(s))

The fields: F = LP
is the space of parametrized loops o : St — P



Complexify the classical picture

e Complex phase space (Pc, we),
e Holomorphic Darboux coordinates (pc, qc)



Now contour is in the complexified loop space

%

b

Lpé




Contour in the complexified loop space

Lpé

4S)
N e /S




Complex Saddle Points: qualitative picture

ANV




Complex Saddle Points: qualitative picture
/AN

constant energy level
H(p,x) = E

The complexified phase space is C? =~ R* now



Complex Saddle Points: qualitative picture

/S S
p
constant complex
energy level
H(px) = E
\ N
/Q‘_/

The complexified energy level space is now an elliptic curve & ~ T?



Complex Saddle Points: qualitative picture

real slice of the
s energy level

complex energy level
H(p,x) = E

Our old friends real energy levels are the real slices of that T?



Complex Saddle Points: qualitative picture

g

\

( x real, p imaginary) slice of the

s energy level = tunneling cycle

complex energy level
H(px) = E

Co—



Complex Saddle Points: qualitative picture

( x real, p imaginary) slice of the

s energy level = tunneling cycle

complex energy level
H(px) = E




Complex Saddle Points: qualitative picture

=

Instanton gas

exponentially accurate

7f "time"

]

N

) 4

Maps to piecewise linear paths on the torus:



Torus cycles: winding (3,4)

This 1711 is not a critical point!



Torus cycles: winding (3,4)

T
i

The gradient flow moves 111 towards a critical point!




Torus cycles: winding (3,4)

i

It moves ...



Torus cycles: winding (3,4)

And moves ...



Torus cycles: winding (3,4)

And moves ...



Torus cycles: winding (3,4)

\

N

And moves further down . ..



Torus cycles: winding (3,4)

e
o

Until we reach the critical point

e




Where are the instantons?

y \U(X)




Where are the instantons and anti-instantons?

AU

anti-instantons?

perturbative
oscillators?

d

|x 0 5@ X

instantons?



What are the critical points ¢,’s in general?

b

Lpé

N e




With an additional assumption

of "algebraic integrability”
Pc fibers over B C C*




The complex critical points are :
rational windings on tori

T?" - complex tori (abelian varieties)



Two winding vectors

namle

(O <Fr <=

«E»

Q>




Algebraic integrability :
action variables

a":]{ pdq, ao,;zﬁ pdq
A; B!

i

2r variables on r-dimensional space: non-independent
apda=dJF

F-prepotential of the effective low-energy N =2 action



Algebraic integrability :

action variables

a"zf pdq, ao,;z% pdq
A; B;

i i

Well-defined on Bc\X

discriminant

I/
‘;'
N7 [
u-plane
B

regular fibers

singular
fiber



Algebraic integrability :
action variables near degeneration locus
Complex codimension 1 stratum: one vanishing cycle

1
= —al
a—0, ap =52 og(a) +

discriminant

singular regular fibers

fiber



Algebraic integrability :
Feature of complex angle variables:

Double periodicity

. 925
wj =0;, W =T = =
A J J g Y 9aipal

,
¢/~¢;+n;+27',-jmj, n;,mkGZ

j=1



Now we can solve for the Complex Saddle Points
0S=0 &

dp OH  dq OH

ds  9q’ ds  Op



Now we can solve for the Complex Saddle Points

0S=0 <«
dp oH dq OH
— = —— 1 = —
ds oq’ ds Op
=

the critical loop ¢, = [y(s)] sits in a particular fiber T2, b € B¢



Complex Saddle Points

Pass to action-angle variables

d¢ .OH da
—_— 17 —_—
ds da’ ds
—
the critical loop ¢, = [y(s)] sits in a particular fiber T2, b € B¢

where the motion is a straight line in the angle variables

o(s) = 9(0) + s

OH
Q=i—
laa



Complex Saddle Points

Pass to action-angle variables
dp OH da 0
2 2t gd
ds da’ ds

=

the critical loop ¢, = [y(s)] sits in a particular fiber T2, b € B¢
where the motion is a straight line in the angle variables

¢(s) = ¢(0) + 2s
.OH

Q -2t
18a

The fiber b is fixed by ¢(0) = ¢(1) up to the periods

#(1)=¢(0)+n+7-m



Superpotential for Complex Saddle Points

OH
Q=n+7-m=i—
Oa
for some integer vectors n,m € Z"
< dWpm =0

Whm(b) = n-a(b) + m-ap(b) — H(b)

Well-defined on Be\Z



Landau-Ginzburg description!
for integer vectors n,m € Z"
dWpm =0
Whm(b) =n-a(b) +m-ap(b) — H(b)

)

Supersymmetric d =2 N =2 LG model



So, now we are facing the next question :

Where are the critical points of the superpotential W, ,,,?



Picard-Lefschetz theory -

In the limit where T — oo degeneration b — b,

b, € X

codimc = 1 stratum: one vanishing cycle

can make estimates ...



Algebraic integrability

r =1, one degree of freedom, examples

w=dpANdx, H= %pQ + U(x)

Mathieu, Heun, Higgs



Another curious quantum-mechanical example

Probe particle in a black hole background



Another curious quantum-mechanical example

Probe particle in a mass M Schwarzschild black hole background
Fixed energy E, fixed angular momentum L —
elliptic curve in the complexified phase space

Ldr\> _, 2M 12
(he) -0 ()



Another curious quantum-mechanical example

Probe particle in a mass M Schwarzschild black hole background
Fixed energy E, fixed angular momentum L =
elliptic curve in the complexified phase space

Ldr\> _, 2M 12
B2y e ()

p? = E*—(1-2Mz) (1+2%), dcp:Lg



In the limit T — oo
the elliptic curve (the energy level) degenerates

the action variables near degeneration locus

1
a~ To(b—by) —0, aD~25i+%a(log(a)—1)+...

. Oa BaD nTo b— b*
=m22 + 020 mTe+ =2
R T TR °g< >+



In the limit T — oo

the complex energy is thus fixed to be

2xim 27T

E(b) ~ bmp= by +bpe” n e "o,

Two quantum numbers!

n=12...,and m=0,1,....n—1



In the limit T — oo

2xim 27T

E(b) ~ bmn=bs+ boe” n e "o,

Two quantum numbers!

n=12..., For (m, n) = (0, 1) these are Bl-ons of G.Dunne and M.Unsal'13-15
andm—0.1,....n—1 Also, G.Basar, R.Dabrowski, G.Dunne, M.Shifman, M.Unsal, ...



In the limit T — oo

2xim 27T

E(b) ~ bmp= by +boe” n e "o,

Two quantum numbers: emergent topology!
n=12...,and m=20,1,..., n—1

For (m, n) = (0, 1) these are Bl-ons of G.Dunne and M.Unsal'13-15
Also, G.Dunne,R.Dabrowski, G.Basar, M.Unsal, M.Shifman, ...



Complex energy In the limit T — oo

3

. .2
3 .

_2nT
e nTy

neZy, 0<m<n



Complex energy In the limit T — oo

E(b) ~ bmp= by + bge” n e "0

2mim _ 27T




Complex energy In the limit T — oo

wim

2n T

E(b) ~ bmp = b, + bpe™ n" e M




Fine structure of t

he saddle points

1
—Re( 2mT/T)

e Y

NG

familiar
exponential
suppression

"\ perturbative
time scale



Fine structure of the saddle points

LAyl
N

familiar
exponential
suppression

perturbative
time scale



Where are the instantons now?

e NN

actual instanton, or Qnti—fnsranmn solution

“\\ unle_Re( g 4 Y
\\ ™ Aj
b

~,




Where are the instantons/antiinstantons now?

Re( Zvrr/'l;])

Degenerate abelian variety. The solutlon requires T = oo.



let this information sink in.”



Next steps

J '-pc

e Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to T,




Next steps

J " @
[

N »

e Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to T,
e Non-zero modes: Evaluate the one-loop determinants




Next steps

e Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to T,
e Non-zero modes: Evaluate the one-loop determinants
e Figure out relative phases of ¢, contributions (spectral flow)



Next steps

e Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to T,
e Non-zero modes: Evaluate the one-loop determinants
e Relative phases of ¢, contributions:
the imprint of the “negative” modes
e Set up perturbation theory to include f-corrections



Next steps

pe

N

e Zero-modes: the whole abelian variety.
Only middle-dimensional cycle contributes to T,
e Non-zero modes: Evaluate the one-loop determinants
e Relative phases of ¢, contributions:
the imprint of the “negative” modes
e Set up perturbation theory to include h-corrections
e Recognize in the asymptotic nature of h-expansion
the influence of different ¢,'s, e.g.
e in the poles of the Borel transforms




Resurgence

connects perturbative and non-perturbative physics



Resurgence connects perturbative and non-perturbative physics

RESURGENCE
& LOCALIZATION

IN STRING THEORY AND
QUANTU FIELD THEORY




Resurgence, perturbative/non-perturbative relations

J. Ecalle’81
RESURGENCE A. Voros:81—04
R [OCAIIZATION [
IN STRING THEORY AND C: Bender and T. Wu'69
UANTUM HE'-DTHEORY J.J. Duistermaat and V.W. Guillemin'75

L. Lipatov'77

: & B. Malgrange'79

é M. Shifman, A. Vainshtein, V. Zakharov'83
E Bogomolny, J. Zinn-Justin'84

M.V. Berry and C.J. Howls'94

P. Argyres, M. Unsal'12

M. Kontsevich and Y. Soibelman’?7?

L\

MARCH 16™ - 20™ 2015 SCGP LECTURE HALL, ROOM 102
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Resurgence

Kavli Institute for S

Theoretical Physics 3 : . _

University of California, Santa Barbara

Resurgent Asymptotics in Physics and Mathematics
Coordinators: Gerald Dunne, Ricardo Schiappa, Mikhail Shifman, Mithat Unsal
Scientific Advisors: Christopher Howls, Wolfgang Lerche

Asymptotics s one of the most powerful mathematical tools in theoretical physics, and recent mathematical progress in the modern
theary of resurgent asymptotic analysis (using trans-series) has recently begun to be applied systematically to many current problems
o interest in physics, such as matrix models, string theory, and quantu field theory. Mathematically, much progress has been made in
the asymptotics of differential and difference equations, both linear and nonlinear, and physical appiications have highiighted the

DATES
importance of localization, complex integrable systems, infinte dimensional Morse theory, saddle point analysis of path integrals and
Picard-Lefschetz theory. Ccta: 7L Ce: 1t 201
The goal of this program is to bring together experts in these diverse fields of physics and mathematics to exchange new ideas and INFORMATION
techniques, and to identify the truly significant problems to be addressed in the near future. Specific focus topics include: m
« Resurgence and non-perturbative physics with applications in gauge theory, sigma models, matrix models, string theory,
AGS/CFT, supersymmetry, integrability, and localizable QFT. Application deadiine is:
« Resurgent asymptotics of nonlinear differential and difference equations, exact WKB, and Stokes phases. 0Oct 16, 2016.
+ Picard-Lefschetz theory and novel methods for analys's, gauge theory, and real-time path Applications will be
integrals. considered and invitations

will be issued after the
above deadiine.



Origin of these ideas
Bethe/gauge correspondence

Gauge theories with N = (2,2) d = 2 super-Poincare invariance
=

Quantum integrable systems



QIS ~ Bethe Ansatz soluble




Bethe/gauge correspondence

NN, S.Shatashvili, circa 2007

Supersymmetric vacua (in finite volume) of gauge theory

-

Stationary states of the QIS



Bethe/gauge correspondence
Equations for vacua from minimization of the effective potential

OW(o)
Joj

= 2min;, i=1,...,r

()

Bethe equations of the QIS



Quantum mechanics from 4d gauge theory

Four dimensional theories
e.g. N = 2 super-Yang-Mills theory in four dimensions

Viewed as two dimensional theories with SO(2) R-symmetry
rotations of two extra dimensions



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Viewed as two dimensional theory with SO(2) R-symmetry
Turn on the twisted mass for this symmetry = h
NN, S.Shatashvili, 2009
Compactify the 1 + 1 dimensional spacetime on R x S! (finite volume)



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto Dp, x St x R? (cigar x circle x time axis)

f-angular coordinate on Dy,
With Q-deformation along the cigar D = D,¢ — D,¢ + hF g



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto Dy, x ST x R (cigar x circle x time axis)

d) |

With Q-deformation along the cigar D

At low energy



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto Dj, x St x R? (cigar x circle x time axis)

<l I

at low energy |

xR1

Becomes 2d sigma model on R, x R!



Quantum mechanics from 4d gauge theory

Four dimensional N = 2 theory

Compactified onto Dj, x St x R (cigar x circle x time axis)

d) st

at low energy |

. xR1

Becomes 2d sigma model on R, x R! = deformation quantization

introduced in 1978

by F. Bayen, L. Boutet de Monvel, M. Flato,

C. Fronsdal, A. Lichnerowicz et D. Sternheimer'78,
NN, E.Witten'2009 existence of formal def.quant. shown by M. Kontsevich in 1999
Using A.Kapustin,D.Orlov's branes'2003 sigma model explored by A. Cattaneo and G. Felder'99



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

L .
Trog . e 2 TkHk
qis



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

_1 H _1
Tryc . e thTka:Trg{me 7 2k TkOk

qis
with 7, the set of “times” - generalized Gibbs ensemble

with Oy the basis of the twisted chiral ring



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

_1 7] _1 _1
Trg,, e h 2k Tkt = Trge e n 20k = Trge (—1)F e7h 2k 70

assuming all vacua are bosonic



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

1 0 1
—= H, F _—5 T Ok _
Trg{qis e n Zk T = Tr«{}(vac (_1) e h Zk Kok =

=Try, (-1)F e 2k Tk

gauge

using [Q, O] = 0 and the usual Witten index argument



Quantum mechanics from 4d gauge theory

Partition function of the quantum system

Partition function of the N = 2 gauge theory on T? x D
with Q-deformation along D

D¢ — Du¢ + hF g
and 2-observables of O integrated along D
1 0@
—O0k=1[ 0O
hok /D k

The latter description makes sense even when A — 0



Partition function of the quantum-mechanical system

susy Partition function of the N = 2 gauge theory

onT? x D
/4d gauge superfields

2
e fT2xD Lsym ezk Tk f'D 02 )

~Donaldson’s surface-observables 111 along D




Unification: effective superpotential
Claim: the N = 2 Landau-Ginzburg description
follows from N = 2 gauge theory!
Compactify the theory on large T?



N = 2 Landau-Ginzburg description
follows from low-energy effective N = 2 gauge theory!

Compactify the theory on large T? (compared to Aqep scale)
take into account the electric n and magnetic m fluxes
go to extreme infrared

Sett = / WS,Z,)T, + D — terms
D



N = 2 Landau-Ginzburg description
follows from low-energy effective N = 2 gauge theory!

Compactify the theory on large T?
take into account the electric n and magnetic m fluxes

r
Wam =Y ma + mlap - iry
j=1
Losev, NN, Shatashvili'97, '98, '99, rigid N = 2,d =2

Vafa, Taylor'99 + = 0, noncompact CY3, N =1,d =4
Gukov,Vafa, Witten'99 7 = 0, CY4, N = 2, d = 2 sugra



From quantum mechanics to quantum field theory

What we have learned



From quantum mechanics to quantum field theory

From what we have learned it is clear, we should be looking for
Complex solutions of equations of motion

on spacetime of the form

S—erMd



Complexify the phase space of the theory on M,
If we are lucky it will be an co-dimensional

algebraic integrable system



Complexify the phase space of the theory on M,
Even if we are unlucky we may still find
the complex energy levels to have non-trivial 71

= non-trivial critical points



Specific examples
CP'-model

5=R2/ d?0 9,7 - D41, F-n=1,
>



Specific examples
CP-model
Now make e C3

Equations of motion read

=0

Sy

(—85+u)
u=09n-

Sy
Qi

n



CP'-model with 7 C3

Equations of motion:
(—85 + u) 7=0

ii - holo (2,0)-diffon ¥, T =0
ﬁ dii - antiholo (0,2)-diff on X, T =0
=0n-0i : consistent Schrodinger potential
I. Krichever, £ = T2, T = T =0, 94



CP'-model with 7 ¢ C°

Equations of motion:

(—85+u)ﬁ’:0

1 Conservation laws



CP'-model with 7 ¢ C3

Equations of motion:
(—85 + u) A=0
When £ = T2, T = tdz?, T = {dz?
Z~Z+ m+nt

With some constants t,f € C



CP'-model with 7 ¢ C°

To exhibit the algebraic integrability
one defines an analytic curve €
so that its Jacobian (or Prym variety) is
abelian variety on which the motion linearizes



Fermi-surface curve

eFermi C C* x C*

(=00 + u(z,2)) v =0,
Periodic potential: u(z+1,Z+1)=u(z+7,Z+7) = u(z,2)
Bloch boundary conditions
P(z+1,2+1) =ay(z,2),
W(z+T71,Z2+7T)=bi(z,2)

Time evolution is hidden

In progress, with I. Krichever



SU(2)-gauge theory in 3+ 1

(O <Fr <=

«E»

Q>




SU(2)-gauge theory in 3+ 1

put the theory on S x S3

space



SU(2)-gauge theory on ...

oibvou DRoP | 0,1 DRoppen | THEN VIHY ARE [ G
Ao BECAPEE
THE LIGHT

15 BETTER | 5

X ? 00 LOKING
21T HERE? g\ 7 Two BLosis :oa  nERe?

T)? DOWN THE
b

Impose rotational mvarlance'



Start with SU(2)-gauge theory on R x R3

space

ds? = dt? + dr* + r?dQ3

Classical Yang-Mills is conformally invariant = AdS, x S?

dt? + dr?
dst = 1 03
r

Cylindrical symmetric ansatz (space SO(3) locked with color SU(2))



Start with SU(2)-gauge theory on R% x R3

space

ds? = dt? + dr? + r?dQ3

Classical Yang-Mills is conformally invariant = AdS, x S2

B dt? + dr?

dg? -
.

+dQ3

/
Cylindrical symmetric ansatz (space SO(3) locked with internal SU(2))



5U(2)-gauge theory on RY x R3 .
Cylindrical symmetric ansatz, n € S

cf. L. Faddeev, A. Niemi'99, A dynamical

~

A=G-Ha+(1+¢)i- (6 x di) + ¢15 - d

S2-dependence drops
We are left with
the U(1) gauge field a
a complex scalar ¢ = ¢1 + o
On AdS, spacetime

Sym — da A xda+ D¢ A*Dadp + /g (1 — |¢|2)2
AdS,

Witten'78



In our case: SU(2)-gauge theory on SL x S3

space

ds® = dt* + R* (d6° + cos(0)*d23)

Classical Yang-Mills is conformally invariant = AdS, x S2

»  d(t/R)*+ db?

ds* = dQ3
° cos(0)? R



In our case: SU(2)-gauge theory on S} x Sspace
We can again use the cylindrical symmetric ansatz
Again the S°-dependence drops
Again we are left with
the U(1) gauge field a and a complex scalar ¢ = ¢1 + i¢»

On AdS;

Global identifications are now different. ..
Similarity to the anharmonic oscillator looks promising. . .
...to be continued



String theory?

Complex saddle points: non-unitary 2d CFT's
RG flows in the space of complexified couplings
Lefschetz thimbles?
Proper framework for theories with complex ¢;, cg central charges?
4d N = 2 gauge theories! again



Remark on space-time dimensionality and susy

We saw that non-supersymmetric quantum mechanics, i.e. 0+ 1 theory
when subject to the full analytic continuation in all couplings



Remark on space-time dimensionality and susy

We saw that non-supersymmetric quantum mechanics, i.e. 0 + 1 theory
when subject to the full analytic continuation in all couplings
Embeds naturally into a supersymmetric gauge theory in 3 4+ 1 dimensions



Remark on space-time dimensionality and susy

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions

subject to the full analytic continuation in all couplings?



Remark on space-time dimensionality and supersymmetry

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions
subject to the full analytic continuation in all couplings?

Some gauge(?) theory in 6 + 17



Remark on space-time dimensionality and susy

What is the case of

a non-supersymmetric theory in 3 + 1 dimensions
subject to the full analytic continuation in all couplings?

Chern-Simons theory of the (2,0) superconformal theory in six dimensions?



Remark on space-time dimensionality and susy

What is the case of

a non-supersymmetric theory in 3 4+ 1 dimensions
subject to the full analytic continuation in all couplings?
Chern-Simons theory of the (2,0) superconformal theory in six dimensions?

Could the supersymmetry in the bulk
nearly cancel the cosmological constant

effectively 3 + 1 dimensions?



THANK YOU

«O>» «F>» «E» «E>» =] Q>



