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Gravitational Quantum Spectroscopy             
with Ultracold Particles

Gravitational
quantum
spectroscopy
with neutrons

Gravitational
quantum
spectroscopy
with
antihydrogen
(hydrogen)
atoms

Ultracold systems: quantum gravitational states: 10 nK,
ultracold antihydrogen: 100 μK, ultracold neutrons: 1mK
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Equivalence: gravity and acceleration

Gravitational and whispering-gallery quantum states of neutrons

Essential features:
- The mirror is a uniform

potential barrier, with no
internal structure,

- The particles are reflected
from the mirror elastically,

- Ultracold neutrons (UCNs)
are the first particles,
which provided
measurements of such
quantum states;

- Ultracold (anti)atoms is the
second candidate particle.

Gravitational 
and inertial 
masses

Inertial mass
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Ultracold (anti)atoms? Quantum reflection!

Problem: attractive van der
Waals/Casimir-Polder potential.

Solution: Quantum reflection is the
limit of lowest energies (gravitational
quantum states!!!) provides nearly total
reflection of an atom from a mirror.

Quantum reflection of atoms has been
demonstrated experimentally.

G. Dufour et al, Quantum reflection of antihydrogen from the
Casimir potential above matter slabs, Phys. Rev. A 87, 2013

We have also found materials/conditions, which provide much
higher reflectivity – to be published.

Family of curves
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Height 
above 
mirror

An illustration for quantum motion of a particle above a mirror in a 
gravitational field and that in an accelerated frame. The heights of the ball 
correspond to most probable heights of a neutron in 5th quantum state. 
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Gravity / Acceleration

Gravitational 
and inertial 
masses

Inertial mass
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An “artistic” illustration for quantum motion of a particle built of normal 
matter (left) and antimatter (right) in a gravitational field

?

Gravitational properties of antimatter have never 
been measured directly

? ?...

28.05.17

Matter / Antimatter

Gravitational 
and inertial 
masses Gravitational 

and inertial 
masses of the 
antiparticle

V.V. Nesvizhevsky
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- Observation times are defined by 
quantum reflection (up to a few 
seconds) 

- Statistics is defined by the phase-
space density and the resolution

- Compact design

- Dramatic increase of observation 
times in microgravity environment

28.05.17

Gravitational states / Fountains

- Observation times are defined by 
the time of flight in the gravitational 
field (up to a few seconds)

- Statistics is defined by the phase-
space density and the resolution

- Large sizes

- Increase of observation times in 
microgravity environment

=

=

>

>

1. Gravitational quantum states of particles in a gravitational field is the 
ultimate limit of particle fountains;

2. The logics of development of interferometric experiments with ultracold 
neutrons of the previous decades: from fountains to gravitational states;

3. BUT the theoretical predication of large probability of quantum reflections 
has to be demonstrated experimentally.

V.V. Nesvizhevsky
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Fundamental short-range forces and neutrons

Short-range forces

Phenomenologically:

- Spin-independent,
- Spin-dependent.

Origin:

- Extra light bosons,
- Extra spatial dimensions,
- Dark matter,
- Axion-like particles etc

Neutrons

- Electric neutrality,

- Availability of high fluxes of
neutrons with wavelengths
comparable to the spatial
scale of extra interactions
to probe,

- High probability of elastic
interaction with matter.
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Fundamental short-range forces and neutrons

All measurements with neutrons related to the topic of this talk are
performed at the Institut Max von Laue – Paul Langevin (ILL),
Grenoble, France. All measurements involve ILL scientists (co-
authors of relevant publications) and also all measurements use
various ILL facilities (GRANIT, PF1B, PF2, D17 etc).
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Short-range forces. State of the art.

Particle-
matter

« Axion window » 
of distances

I. Antoniadis, S. Baessler, M. Buchner, V.V. Fedorov, S. Hoedl, V.V. N., G. Pignol, K.V. 
Protasov, S. Reynaud, Yu. Sobolev, « Short-range fundamental forces », Compt. Rend. Phys.
12 (2011) 775.
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Short-range forces. More recent improvements

Measurements using UCNs in the
EDM apparatus at PSI (Villigen,
Switzerland) [S. Afach et al,
Phys. Let. B 745 (2015) 58].
Red line (H) shows the new
constrain derived from this
experiment.
Solid line (I) indicates an
achievable constraint that could
be obtained with a modified
installation.
A slightly better (then H)
constraint was measured with
polarized 𝐻𝑒3 in M. Guigue et al,
Phys. Rev. D 92 (2015) 114001.
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Short-range forces. More recent improvements

Measurements using UCNs in the
EDM apparatus at PSI (Villigen,
Switzerland) [S. Afach et al,
Phys. Let. B 745 (2015) 58].
Red line (H) shows the new
constrain derived from this
experiment.
Solid line (I) indicates an
achievable constraint that could
be obtained with a modified
installation.
A slightly better (then H)
constraint was measured with
polarized 𝐻𝑒3 in M. Guigue et al,
Phys. Rev. D 92 (2015) 114001.
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Short-range forces. State of the art.

I. Antoniadis, S. Baessler, M. Buchner, V.V. Fedorov, S. Hoedl, V.V. N., G. Pignol, K.V. 
Protasov, S. Reynaud, Yu. Sobolev, « Short-range fundamental forces », Compt. Rend. Phys.
12 (2011) 775.

Particle-
particle

Particle-
matter

Matter-
matter
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Short-range forces. State of the art.

Y. Kamiya, K. Itagaki, M.
Tani, G.N. Kim, and S.
Komamiya, “Constraints on
new gravitylike forces in
the nanometer range”,
ArXiv:hep-ex/1504.02181

More measurements to be
done at ILL within next few
years
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Neutron gravitational states.

- Several independent groups (Tokyo, QBounce, GRANIT);
- Building a dedicated facility at ILL for experiments with

gravitational quantum states of neutrons in the long-storage
mode (GRANIT);

- Neutron results for short-range forces are not yet competitive
to results of short-range gravity and Casimir experiments but
they are rapidly improving (remember that one should improve
by 5-6 orders of magnitude; however, no major systematic
effects associated with neutrons have been identifies);

- Significant worldwide effort to increase available densities of
UCNs.

Short-range forces. More recent improvements
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Flow-through mode; limited
observation time

Storage mode: ultimate observation 
time and energy resolution

Probability
of transition

Perturbation 
frequency, Hz

ijji wEE  

Hz25621 

eVE 18

min 10

6

12

min 10
 EE

E

Transitions could be excited, for instance: 

- By periodically varying magnetic field gradient;

-By periodically varying local gravitational field;

-By oscillating mechanically the mirror. 

V.V. N., and K.V Protasov, “Quantum states of neutrons 
in the Earth’s gravitational field: state of the art, 

applications, perspectives” in Edited book on Trends in 
Quantum Gravity Research (D.C. Moore, New York, USA, 

NOVA, 2005; pp. 65-107) 

28.05.17

Transitions between gravitational quantum states
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Main Mirror

28.05.17

Gravitational quantum states in a storage mode

Mirrors are similar to those in
the gravitational wave detectors
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Main Mirror

28.05.17

Gravitational quantum states in a storage mode

Large inter-plane distances due to
intercalated graphite technology

Precision characterization of
the resulting neutron beam
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Main Mirror

28.05.17

Gravitational quantum states in a storage mode

The first He-4 UCN source providing
UCNs for a “user” experiment (record
brightness, small volume)
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GRANIT first measurements

- The simplest configuration of
the GRANIT spectrometer in
the flow-through mode is similar
to the first observation of
gravitational quantum states;

- Neighbouring quantum states
have never been clearly
resolved experimentally;

- This is needed for 1) measuring
much more precisely the
parameters of quantum states,
2) for providing contrast in
experiments with resonance
transitions between
gravitational quantum states.
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Main Mirror

28.05.17

First result are promising! 1) the
absorber is more efficient by an
order of magnitude, 2) UCN flux
is sufficient, 3) backgrounds are
acceptable.

GRANIT first measurements
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Main Mirror

28.05.17

GRANIT first measurements

One set of preliminary data
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Real-time position-sensitive UCN detectors of 
high resolution (by Benoit  Clement et al)

B10 converters
n + 10B  7Li +  , BR = 6.3%
ELi= 1014 keV E = 1775 keV

n + 10B  7Li* +   7Li +  +  , BR = 93.7%
ELi= 841 keV E = 1471 keV E = 478 keV



10B

Charge particle
detector (Si)Neutron

The conversion layer must be
- thick enough to absorb UCNs
- thin enough to allow /Li to escape

Process developped at LPSC using plasma PVD
- 200 nm B layers
- intermediate layer : Ni (~20 nm)
- surface layer : 15-20 nm Ti 

Thin layer deposition of B10
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The Ti layer reduces the 
reflection of slow UCNs, if 
thin enough; 

UCN losses vs velocity

The Ni layer reflects faster
UCNs passing through the B10
layer

Position-sensitive UCN detectors of high resolution

The efficiency
20 nm entrance Ti layer; 20 nm back Ni layer;         
account for energy losses in the layer(s); 
a few 100 keV detection threshold; 200nm 10B 84% to 
88% efficiency, almost independent of UCN velocity

The role of Ti and Ni layers
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UCN Boron piXels : pixelized detector using
commercial CCD sensors: Windowless CCD; Ti-
B-Ni layer on top of CCD; Hamamatsu P11071-
1106N; 2048x64 pixels 14x14 µm; 
reconstructed barycenter of alpha clusters
Estimated resolution : ~1µm

Resolution

Test with UCNs
Energy
measurement
can be used to 
improve the 
spacial
resolution for 
neutrons

Position-sensitive UCN detectors of high resolution

Test with α-particles

Test with cold neutrons at PF1B
The spatial resolution for neutrons 
is better than 3 μm as expected
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UCNBox detector
8 CCD (20cm active region),   vertical position and tilt 
adjustable, dedicated electronics

Position-sensitive UCN detectors of high resolution
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Better precision and reliability for experiments with neutron
whispering gallery; record sensitivity; good chances for major
improvements

Neutron Whispering Gallery
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Neutron Whispering Gallery
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First observation in 2010
(experiment versus theory)
with a Si concave mirror

Neutron Whispering Gallery
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Theory

Experiment

Experiment

Theory

Neutrons tunneling
through the mirror

Neutrons passing to
the exit of the mirror

Neutron Whispering Gallery: methods
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Better precision
and reliability for
experiments with
neutron whispering
gallery; record
sensitivity; good
chances for major
improvements

Short-range forces. More recent improvements
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Improvements:
- No Si-oxide layer on the mirror surface (as in the preceding

experiment), thus better defined surface potential and
smaller systematics;

- Lower impurities on the surface, and thus smaller systematics;
- Suppression of parasitic transitions between whispering-

gallery states due to the more uniform surface potential;
- Optimization of the neutron beam shaping and resolutions,

thus higher statistics and lower systematic effects;
- Better control of the false effects due to the major

experience gained with Si mirrors;
- Higher critical velocity of the mirror material, thus the

access to shorter distances also higher statistics.

New experiment with a MgF2 concave mirror
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Raw
data

New experiment with a MgF2 concave mirror
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Examples of the data/calculations
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Analysis of the data is in progress

New experiment with a MgF2 concave mirror
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Examples of the data/calculations
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Conclusion

- The method of quantum bouncing is gaining ground, attention and
support. It is powerful, can be “easily” implemented;

- Neutron (neutron-related) constraints for fundamental short-
range interactions are improving in a broad distance range due
to efforts of different groups using different methods;

- All these activities are efficient in terms of results/resources;

- These tendencies will stay for the observable future.
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after Conclusion

Gravitational states of  𝑯(𝑯) atoms on the 𝑯𝒆 surface in at fall
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