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In the past century, and even nowadays, one could 
encounter the opinion that in physics nearly everything had 
been done. (...) I consider these views as some kind of 
blindness. The entire history of physics, as well as the state 
of present-day physics and, in particular, astrophysics, 
testifies to the opposite. In my view we are facing a 
boundless sea of unresolved problems.

V. L. Ginzburg, Nobel lecture
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Euclid

Existing galaxy surveys:

Future surveys:



The beautiful Universe of  SDSS
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Physics with LSS

• baryon acoustic oscillations = standard ruler in the Universe 

dark energy equation of state

• evolution of perturbations

properties of dark matter (e.g. fifth force, WDM)
and dark energy (e.g. clustering)

• primordial non-gaussianity

interactions in the inflationary sector

neutrino mass
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quantified by

               naturally appears in extended inflationary models 
(multiple fields, extended kinetic action, ...)
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Baryon acoustic oscillations

Anderson et al. (BOSS collaboration)Planck collaboration
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Neutrino mass: current status

�m� > 0.1 eV�m� > 0.05 eV

(tritium decay)

(CMB + BAO)   Vagnozzy et al. (2017)

< 0.12 eV (CMB + Ly  )    Palanque-Delabrouile et al. (2015)�

m�e < 2 eV

�m� < 0.15 eV
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timation method in its entirety, but it should be equally
valid.

7.3. Comparison to other results

Figure 35 compares our results from Table 3 (modeling
approach) with other measurements from galaxy surveys,
but must be interpreted with care. The UZC points may
contain excess large-scale power due to selection function
effects (Padmanabhan et al. 2000; THX02), and the an-
gular SDSS points measured from the early data release
sample are difficult to interpret because of their extremely
broad window functions. Only the SDSS, APM and angu-
lar SDSS points can be interpreted as measuring the large-
scale matter power spectrum with constant bias, since the
others have not been corrected for the red-tilting effect
of luminosity-dependent bias. The Percival et al. (2001)
2dFGRS analysis unfortunately cannot be directly plotted
in the figure because of its complicated window functions.

Figure 36 is the same as Figure 35, but restricted to a
comparison of decorrelated power spectra, those for SDSS,
2dFGRS and PSCz. Because the power spectra are decor-
related, it is fair to do “chi-by-eye” when examining this
Figure. The similarity in the bumps and wiggles between

Fig. 35.— Comparison with other galaxy power spectrum measure-
ments. Numerous caveats must be borne in mind when interpreting
this figure. Our SDSS power spectrum measurements are those from
Figure 22, corrected for the red-tilting effect of luminosity dependent
bias. The purely angular analyses of the APM survey (Efstathiou
& Moody 2001) and the SDSS (the points are from Tegmark et al.
2002 for galaxies in the magnitude range 21 < r∗ < 22 — see also
Dodelson et al. 2002) should also be free of this effect, but rep-
resent different mixtures of luminosities. The 2dFGRS points are
from the analysis of HTX02, and like the PSCz points (HTP00) and
the UZC points (THX02) have not been corrected for this effect,
whereas the Percival et al. 2dFGRS analysis should be unafflicted
by such red-tilting. The influential PD94 points (Table 1 from Pea-
cock & Dodds 1994), summarizing the state-of-the-art a decade ago,
are shown assuming IRAS bias of unity and the then fashionable
density parameter Ωm = 1.

Fig. 36.— Same as Figure 35, but restricted to a comparison
of decorrelated power spectra, those for SDSS, 2dFGRS and PSCz.
The similarity in the bumps and wiggles between the three power
spectra is intriguing.

Fig. 37.— Comparison of our results with other P (k) constraints.
The location of CMB, cluster, lensing and Lyα forest points in this
plane depends on the cosmic matter budget (and, for the CMB,
on the reionization optical depth τ), so requiring consistency with
SDSS constrains these cosmological parameters without assumptions
about the primordial power spectrum. This figure is for the case of a
“vanilla” flat scalar scale-invariant model with Ωm = 0.28, h = 0.72
and Ωb/Ωm = 0.16, τ = 0.17 (Spergel et al. 2003; Verde et al. 2003,
Tegmark et al. 2003b), assuming b∗ = 0.92 for the SDSS galaxies.

Tegmark et al. (2004)
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interacting through gravity

�2� = 4�G

�
f d3v

Vlasov -- Poisson system for the distribution function f(x,v, t)

• numerical solution: N-body simulations

• analytical perturbative methods at k � 0.3 h�1Mpc

,

+ valid up to arbitrary k

- costly, scanning over theory parameters is time-consuming, 
non-standard models are hard to implement 

�f

�t
+ v · �f

�x
��� · �f

�v
= 0

- are approximate

+ theoretical control of physical processes, flexibility 
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Simplifying the problem

Newtonian approximation at 

nonrelativistic fluid at

DM particles move by 

10�3

treat as perturbations

vorticity decays at linear level           work with 

10 Mpc � l � 104 Mpc

uH�1 � 10 Mpc

l � H�1 � 104 Mpc

� � � · u

���

��
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�2� =
3
2
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Standard perturbation theory (SPT)

� = �(1) + �(2) + �(3) + . . .

�(1) =

�(2) =
�(3) =

�0

�0

�0

�0

�0

�0

Solve for time evolution iteratively:

evolution from      to   � �0



Average over the ensemble of initial conditions:

=

+

+

initial power
spectrum

��(k1, �)�(k2, �)� = ��(1)�(1)� + ��(2)�(2)� + 2��(1)�(3)� + . . . =

P (k, �0)
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Problems of  SPT

overdensity is moved by an almost homogeneous flow, 
accumulation of the effect with time 

two overdensities will move (almost) identically, 
cancellation in equal-time correlators 

Matsubara (2007), Padmanabhan et al. (2008)
Possible way out: Lagrangian picture 



Problems of  SPT
“Ultraviolet” Loop integrals run over all momenta including 
short modes where the fluid description is not applicable. 



Problems of  SPT
“Ultraviolet” Loop integrals run over all momenta including 
short modes where the fluid description is not applicable. 

�1) introduce a UV cutoff     



Problems of  SPT
“Ultraviolet” Loop integrals run over all momenta including 
short modes where the fluid description is not applicable. 

�1) introduce a UV cutoff     

2) renormalize the interaction vertices to ensure that the  
physical observables are    -independent �



Problems of  SPT
“Ultraviolet” Loop integrals run over all momenta including 
short modes where the fluid description is not applicable. 

�1) introduce a UV cutoff     

3) add counterterms into the equations of motion to account 
for deviations from fluid description 

2) renormalize the interaction vertices to ensure that the  
physical observables are    -independent �



Problems of  SPT
“Ultraviolet” Loop integrals run over all momenta including 
short modes where the fluid description is not applicable. 

EFT of LSS

Baumann, Nicolis, Senatore, Zaldarriaga (2010)
Carrasco, Hertzberg, Senatore (2012)
Pajer, Zaldarriaga (2013)

+ many more

�1) introduce a UV cutoff     

3) add counterterms into the equations of motion to account 
for deviations from fluid description 

2) renormalize the interaction vertices to ensure that the  
physical observables are    -independent �
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Figure 2: The two-loop EFTofLSS prediction for the z = 0 power spectrum, when one includes only

one counterterm (associated with the speed of sound c2s(1)), along with various other theory predictions.

The EFT curves use a value of c2s(1) ' 0.53
�

k
NL

/(2hMpc�1 )
�

2

. We can see that the theory performs

better and better as higher order contributions are included. The blue shading represents the variation

of the result if we perform the fit to determine c2s(1) up to 0.75k
fit

and choose the two values 1� away

from the central value, where k
fit

is the wavenumber beyond which c2s(1) begins to deviate from the value

determined at lower k. For k < 0.1hMpc�1 , the linear power spectrum in the theory prediction is

replaced with the power spectrum measured from the initial conditions of the simulations, allowing for

a dramatic reduction in the variance of the P
theory

/P
NL

curves at these wavenumbers, but also implying

that the cosmic variance errorbars (represented by the grey shading) do not reflect the uncertainty on

the curves for k < 0.1hMpc�1 (as discussed in Sec. 2.1). The k
reach

of the EFT at two loops is about

k
reach

' 0.15hMpc�1 , where the cosmic variance is about 0.4%, even though there is large theoretical

uncertainty. The k-reach is smaller than what was previously presented in [4], where the errorbars were

taken to be ⇠2%, because the much higher precision of the available numerical data allows the choice of a

lower k
ren

, which eliminates the strong cancellation between various two-loop terms that was seen in [4].

analytic techniques prior to the EFTofLSS such as RPT and RegPT, which di↵er from SPT only by the

resummation of the IR-modes, which are irrelevant for the UV reach of the theory 9). The blue shaded

region in Fig. 2 represents the di↵erence between fitting up to k
fit

or instead fitting up to 0.75 k
fit

and

choosing the values of c2s(1) 1� away from the best fitting point; this represents a rough estimate of the

theoretical error associated with the prediction of the EFTofLSS at this order, and should be taken at

the order of magnitude level.

We now make a few comments on these results. The first is on the importance of the IR-resummation.

Without performing the IR-resummation, the EFT prediction would be o↵ with respect to the data by

9This point is quite unappreciated in the literature, so we repeat it here. RPT is sometimes claimed to improve
the UV reach of the theory. However, to our understanding, it is supposed to be just an IR-resummation, and
therefore if it improves the broad-band UV reach of the theory it violates General Relativity. It is therefore
incorrect and should not be considered as a way to increase the broad-band UV reach. Alternatively, one should
consider RPT as a fitting function. See [14] for a more detailed discussion. It should not be forgotten that the
fact that RPT violates General Relativity (and cannot therefore be a correctly implemented IR-resummation) was
already pointed out in the original RPT paper [25], whose focus indeed was not on the broad-band k-reach.

11

from Foreman, Perrier, Senatore (2015)
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Without performing the IR-resummation, the EFT prediction would be o↵ with respect to the data by
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incorrect and should not be considered as a way to increase the broad-band UV reach. Alternatively, one should
consider RPT as a fitting function. See [14] for a more detailed discussion. It should not be forgotten that the
fact that RPT violates General Relativity (and cannot therefore be a correctly implemented IR-resummation) was
already pointed out in the original RPT paper [25], whose focus indeed was not on the broad-band k-reach.

11

from Foreman, Perrier, Senatore (2015)

Abolhasani, Mirbabayi, Pajer (2015)

Complications: 

• treatment of stochastic terms is unclear 

• coefficients of the counterterms have non-
local time-dependence



In approaches operating with the equations of 
motion IR and UV issues are mixed



To clear up      

          use the methods of QFT / statistical mechanics

In approaches operating with the equations of 
motion IR and UV issues are mixed

Example: resummation of IR divergences in QED 
is clearly separated from UV renormalization
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Blas, Garny, Ivanov, S.S. (2015,2016)
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Two integrals must coincide         

equation for the “vertices”     

�̇n = �n��n �
n�

m=2

Cm
n Am�n�m+1 + An+1}

contains only       with�n� n� < n

The same logic for fields in space with the substitution:
integral           path integral     =�

d

d�

�
d�e��[�;� ]

�
= 0



Generating functional for cosmological correlators

NB.      is an action of a (nonlocal) 3d Euclidean QFT;     

           --- an external parameter

Z[J, � ] =
�

[D��] exp
�
� �[��; � ] +

�
J��

�

� =
1
2

�
�2
�

P (k)
+

��

n=3

1
n!

�
�n(�)�n

�

�
�



Advantages

• For gaussian initial conditions the time dependence factorize 

effective coupling constant

� =
1

g2(�)
�̄

NB. For primordial NG

� =
1
g2

�̄ +
1
g3

�̂
� fNLg0
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• Simplified diagrammatic technique

= g2P̄ (k)k

k1
k2

k3

=
1
g2

�̄4(k1, k2, k3)

k1

k2

=
1
g2

�̄3(k1, k2)

+���������� =



All      ,        are finite for soft momenta �n Kn

 no IR divergences in the individual loop diagrams  

IR safety

lim
��0

�n(k1, . . . , kl, �q1, . . . , �qn�l) < �

NB. Can be related to the equivalence principle / 
Galilean invariance of      through Ward identities  �
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IR enhanced effects due to flow gradients



IR enhanced effects due to flow gradients

smearing of the BAO feature in the correlation functions



IR resummation

In TSPT large IR contributions can be systematically resummed

Step 1: smooth + wiggly decomposition

P (k) = Ps(k) + Pw(k) �(k) = �s(k) + �w(k)
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Step 1I: identification of leading diagrams correcting the wiggly 
part            daisies

+ +++ + ...

a transparent description of the physical e↵ects of bulk motion on the BAO feature. On

the other hand, TSPT does not feature some of the spurious e↵ects present in higher-order

Lagrangian perturbation theory. Our main result is a systematic technique to identify

and resum enhanced infrared contributions a↵ecting the BAO peak. It admits a simple

diagrammatic representation within TSPT and allows to compute and assess higher-order

corrections in a systematic way.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P is evolved from the initial time to

a finite redshift, and expressed in terms of a functional cumulant expansion in powers of

the density- and velocity divergence field at this redshift. In a second step, the statistical

averages are computed perturbatively. The latter step can be conveniently represented by

a diagrammatic series, where the quadratic part of the cumulant represents a propagator,

and the higher cumulants n-point vertices �n. In [24] it has been shown that these vertices

are IR safe, i.e. free from spurious enhancements / k/q when one of the wavenumbers

becomes small.

In order to identify enhanced contributions related to the BAO, we split the initial

power spectrum into a smooth component Ps and an oscillatory contribution Pw. Then

the TSPT three-point vertex expanded for q ⌧ k and to first order in Pw is given by

�
3

(k, q, q0) ! �(k + q + q0)
k · q
q2

✓
Pw(k + q)� Pw(q)

Ps(k)2

◆
. (1.1)

In the limit q ! 0 the two power spectra in the enumerator tend to cancel the 1/q enhance-

ment from the vertex, as required by the equivalence principle. However, as emphasized

recently in [8], the Taylor expansion of Pw(k + q) becomes unreliable for kosc ⌧ q ⌧ k.

This means that non-linear corrections to the power spectrum at scale k receive large cor-

rections from IR modes q within this range. In this work we identify these contributions

for all �n vertices, and establish a power counting scheme to compute corrections to the

most enhanced terms. The leading contributions to the oscillatory part of the power spec-

trum are given by so-called daisy diagrams, and their resummation can be represented

diagrammatically in the following form (cf. Sec. 3 for details),

P IR res,LO
w (⌘; k) = +

�̄w
4

(1.2)

+
�̄w
6

+
�̄w
8

+ + ...

– 3 –

P dressed
w =

= e�k2�2
LPw(k)
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separation between 
hard and IR momenta



P (k) = Ps(k) + e�k2�2
LPw(k)

Step III: add the smooth part



P (k) = Ps(k) + e�k2�2
LPw(k)

Step III: add the smooth part

Step IV: compute to the desired order in hard loops using the 
dressed power spectrum

NB. Valid for any correlation function



P (k) = Ps(k) + e�k2�2
LPw(k)

Step III: add the smooth part

Further developments: 

• NLO IR corrections. Important for the shift of BAO peak 

Step IV: compute to the desired order in hard loops using the 
dressed power spectrum
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Sensitivity to the IR separation scale: LO vs NLO
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Figure 6. Infra-red resummed matter correlation function at LO obtained in TSPT for three
di↵erent values of the IR separation scale k

S

, and two di↵erent redshifts (left: z = 0, right: z =
0.375). Also shown is the linear result (dashed) and the result of the Horizon Run 2 large-scale
N -body simulation [25]. We use 1/k

osc

= 110Mpc/h.

We now turn to the NLO result. The comparison of the matter correlation function

obtained using (7.4) with the N -body data is shown in Fig. 7. One observes that the

agreement is considerably improved compared to the LO. Furthermore, the dependence on

the separation scale kS is reduced. This is an important consistency check, because the

dependence on kS vanishes in principle in the exact result. Thus, any residual dependence

on kS can be taken as an estimate of the perturbative uncertainty, and it is reassuring that

this uncertainty is reduced when going from LO to NLO.

We conclude that the systematic IR resummation gives a very accurate description

of the correlation function at BAO scales. The residual discrepancies at shorter distances

visible in Fig. 7 are expected due to several e↵ects. The variance due to the finite boxsize,

and the finite resolution of the N -body data leads to an uncertainty of several percent10.

In addition, the correlation function is sensitive to the UV physics which has been left

beyond the scope of our present study.

In Fig. 8 we show the ratio of the NLO result to the correlation function obtained

in the Zel’dovich approximation11. The di↵erences are around 5% in the BAO range,

and therefore our results are broadly consistent with ZA, as expected. Nevertheless, the

di↵erences are larger than the ultimate precision that is desired to match future surveys.

The ratio between the N-body correlation function and the one obtained in ZA is also shown

on the same plot by the red line. The TSPT result agrees with the N-body data somewhat

better than ZA in the BAO peak region, though the error range of the N-body data does

10Ref. [25] does not give error bars for the simulation data points. An estimate of the statistical variance

using the number of available modes in the simulation as well as the finite resolution suggests that the

uncertainty is at the few percent level in the range of scales relevant for BAO. This level of accuracy is

also consistent with the di↵erence between the correlation function extracted from Horizon Run 2 (L =

7.2Gpc/h, N = 60003) versus Horizon Run 3 (L = 10.8Gpc/h, N = 72103) data presented in [25].
11Here by the Zel’dovich approximation we mean the leading order of Lagrangian perturbation theory.

The 2-point correlation function in ZA was computed with the publicly available code ZelCa [35].
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Figure 7. Same as Fig. 6, but showing the infra-red resummed matter correlation function
obtained in TSPT at next-to-leading order (blue lines) compared to the Horizon Run 2 N -body
data (red line). Note that the three lines for the three values of k

S

are almost indistinguishable.
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Figure 8. The correlation function computed in TSPT at NLO normalized to the correlation
function in the Zel’dovich approximation (blue curves). We also show the correlation functions of
the Horizon Run 2 and 3 [25] divided by the Zel’dovich approximation (red curves).

not allow at the moment to clearly discriminate between the two. As discussed before, the

TSPT framework can be systematically extended to NNLO, and further corrections from

UV modes can be incorporated, which is left for future work.

Finally, we have compared the results for the correlation function computed using

the full NLO formula (7.4) and its reduced version without the last term containing the

operators Sa, Sb. The relative di↵erence �⇠/⇠ at z = 0 does not exceed 0.5%. Given the

strong dependence of the omitted term on the growth factor and hence its quick decrease

with redshift, one concludes that this term is negligible for all practical purposes.
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dependence on      decreases with the loop order 

Residual dependence gives an estimate of the error ~ 2% in the 
BAO range
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BAO and the neutrino mass
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Figure 1. Left: Linear PS z = 0. Right: Linear CF z = 0 fig:linear

way we study this is by including the e↵ects of resummations and NLO in Sec. 3. To un-

derstand the reason behind the plots in Fig. 1, let us make a wiggly-smooth decomposition

of the PS in the lines of [2]. db:The plots in this section are done using a FFT that

yields results slightly di↵erent from the direct FT -that takes longer-. There

are some small di↵erences between these two methods that is good to keep this

in mind, I can produce better plots if you think it’s relevant The presence of neu-

trinos modifies both the smooth part and wiggly part of the PS. In Fig. 2 we show the

smooth parts extracted for the di↵erent masses, and (on the rhs) the di↵erent wiggly parts

(normalized by the smooth parts).

Figure 2. Left: Smooth part of PS. Right: Wiggles (properly normalized by the smooth part) fig:sm-wig

First, the change in the wiggly part seems to be in agreement with a rescaling coming

from a di↵erent amplitude of the background P

w
1 /P

w
2 ⇠ P

s
1 /P

s
2 . This makes sense since

this ratio is proportional to e

⌘eq
/⌦m [5], which is almost the same for all cases. The net

e↵ect is a larger peak for the massless case, see Fig. 3. Second, there is an e↵ect on the

smooth part in the CF (Fig. 3). One can approximate the change in the smooth part as

a shift of the peak to lower k and a loss of power at high k. A toy model for this e↵ect is

– 3 –

Effect on linear PS:

At                               degenerate with the overall 
normalization

k > 0.05 h�1Mpc

k (h�1Mpc)

P
(k

)(
h�

1
M

pc
)3
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UV renormalization in TSPT
Introduce a cutoff:

�n �� ��
n

Wilsonian renormalization group:

Boundary conditions = counterterms       encapsulating the 
effects of short modes  

Cn

P (k) �� P�(k) =

�
P (k), k < �
0, k > �

d��
n

d�
= Fn[P�,��]



UV renormalization in TSPT

+ clear separation between PR and PI counterterms 

+ stochastic contributions are at the same footing as viscous 
ones

C2

C3

+

+ +

+                  local in time by constructionCn({k}, �)

+



- spatial locality is not manifest        

                                   are non-polynomial in momenta         Cn({k}, �)

What fixes the structure of the counterterms and how many 
of them are needed ?



- spatial locality is not manifest        

                                   are non-polynomial in momenta         Cn({k}, �)

What fixes the structure of the counterterms and how many 
of them are needed ?

Empirically, a single                          is enough to improve 
agreement with the N-body data of 2- and 3-point 
correlators

C2 � k2/P (k)

Figure 13. The performance of the 0-parameter-I prescription (left panel) and SPT 1-loop (right
fig:bisp3

panel) for z = 0. The data/theory ratio and 2�� error bars are shown. Each blue dot corresponds
to a particular triangle.

Figure 14. The performance of the 0-parameter-I prescription (left panel) and SPT 1-loop (right
fig:bisp4

panel) on equilateral triangles, k1 = k2 = k3. Left panel: z = 0; right panel: z = 1.

Figure 15. The performance of the 0-parameter-I prescription (left panel) and SPT 1-loop (right
fig:bisp5

panel) on flattened triangles, k1 = k2 = k3/2. Left panel: z = 0; right panel: z = 1.
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Summary and Outlook  

time-sliced perturbation theory (TSPT) casts the theory of 
cosmic structure in the language of (3d Euclidean) QFT

clean derivation of known results and new insights 
(diagrammatic resummation of IR-enhanced contributions into 
BAO, UV renormalization à la Wilsonian RG, large deviation 
statistics as semiclassical approximation)

classification of UV counterterms

inclusion of “astrophysical” effects (biases, redshift space 
distortion, baryons)

m�

perturbative methods are essential to fully exploit the 
potential of LSS surveys (      ,        , properties of DM and DE)fNL

comparison with the data, searches for new physics


