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PARTON MODEL

Elastic scattering : electron — proton
—> proton (hadron) is NOT point-like

Deep inelastic scattering : electron — proton
—> proton (hadron) consists of point-like particles-partons

Cross section (hadron) = ¥ cross section (parton) x weights

Weights — probabilities in the system of infinite momentum

(Bjorken, Feynman)



IN QCD weights depend on () of hard processes
(SCALING VIOLATION, improved PM)
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Scaling violation (dependence on Q) from
DGLAP ( Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ) equations:
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where ¢(;°) is the running coupling constant at the reference scale 1/,
ns 1s the number of active flavours,
Agcp 1s the dimensional QCD parameter.



It is possible (BUT very rarely):  hard double parton scattering
(subprocesses A and B)

The inclusive cross section of a double parton scattering process in a
hadron collision is written in the following form (with only the assumption

of factorization of the two hard parton subprocesses A and B)
(Paver, Treleant,..., Blok,...., Diehl,...).
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where b is the impact parameter — the distance between centers of

colliding (e.g., the beam and the target) hadrons in transverse plane.

[;i(x1, 29, by, ba; QF, Q3) are the double parton distribution functions, which
depend on the longitudinal momentum fractions z; and z,, and on the

transverse position b; and by of the two parton undergoing hard processes
A and B at the scales (); and ()-.

o and &ﬁ are the parton-level subprocess cross sections.

The factor m /2 appears due to the symmetry of the expression for interchan-
ging parton species i and j. m =1 if A = B, and m = 2 otherwise.



The double parton distribution functions I';;(x1, x9; by, ba; QF, Q5) are the
main object of interest as concerns multiple parton interactions. In fact,
these distributions contain all the information when probing the hadron
in two different points simultaneously, through the hard processes A and

B.

It 1s typically assumed that the double parton distribution functions may
be decomposed in terms of longitudinal and transverse components as
follows:

Fij(fbl, x2; by, ba; Q%a Q%) — D;,,j(fbl, L23 Qi Qﬁ)f(bl)f(bz),

where f(b;) is supposed to be a universal function for all kinds of partons
with the fixed normalization

[ £(b1) f (b1 — b)d*b1d’b = [ T'(b)d’b = 1,

and
T(b) = J f(by) (b — b)d?b,
is the overlap function (not calculated in pQCD).



If one makes the further assumption that the longitudinal components
Dy (21, 20; Q%,Q3) reduce to the product of two independent one parton
distributions,

Dzj(mla L2 Q%? Qg) — D;:l(wl; Q%)D%(CB% Qg)a

the cross section of double parton scattering can be expressed in the

simple form
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is the effective interaction transverse area (effective cross section).
R.¢ 1s an estimate of the size of the hadron.



The momentum (instead of the mized (momentum and coordinate))
representation is more convenient sometimes:
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Here the transverse vector ¢ is equal to the difference of the momenta of
partons from the wave function of the colliding hadrons in the amplitude
and the amplitude conjugated. Such dependence arises because the diffe -
rence of parton transverse momenta within the parton pair is not conserved.



The main problems are

* to make the correct calculation of the two-parton functions

[yi(x1, 20, q; QF, Q3) WITHOUT simplifying factorization assumptions
(which are not sufficiently justified and should be revised:

(Blok, Dokshitzer, Frankfurt, Strikman; Diehl, Schafer;

Gaunt, Stirling;, Ryskin, Snigirev,...))

* to find (observe) longitudinal momentum parton correlations
and deviation from the factorization form of DPS cross section.

These functions are available in the current literature only for q = 0
in the collinear approximation. In this approximation the two-parton
distribution functions,l;;(x1, 29;q = 0; Q% Q*) = D}/ (1, 29; Q%, Q?) with the
two hard scales set equal, satisfy the generalized DGLAP evolution equations
( Kirshner; Shelest, Snigirev, Zinovjev).
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The solutions of the generalized DGLAP evolution equations with the
given initial conditions at the reference scales 1°(f = 0) may be written in
the form:

D}jblj2(w19 L2, t) — D'}jlllh(mla L2, t) + D}?(BCD) (wla L2y t)a
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The first term is the solution of homogeneous evolution equation
(independent evolution of two branches), where the input two-parton
distribution is generally NOT known at the low scale pu(¢ = 0). For this
non-perturbative two-parton function at low z;, 20 one may assume the
factorization D‘Z}lﬁ/(zl, 29,0) >~ D{f/(zl, O)D{fl(zg, 0) neglecting the constraints
due to momentum conservation (z; + 2, < 1).

This leads to

D;.le(wl, Lo, t) ~ D;:L(a:l, t)D‘;L($2, t)

the factorization hypothesis usually used in current estimations.

This MAIN result shows that if the two-parton distributions are factorized
at some scale 12, then the evolution (second term) violates this factorization
inevitably at any different scale (Q* # u?), apart from the violation due to
the kinematic correlations induced by the momentum conservation.



For a practical employment it is interesting to know the degree of this
violation. We did (Korotkikh, Snigirev) it using the CTEQ fit for single
distributions as an input. The nonperturbative initial conditions Dj(z,0)
are specified in a parametrized form at a fixed low-energy scale )y = u =
1.3 GeV. The particular function forms and the value of )y are not crucial
for the CTEQ global analysis at the flexible enough parametrization,
which reads

:BDZ(:I:, 0) = AgazAJl(l — :B)A%eA%x(l + eAZlaz)A%.

The independent parameters Aj, 1_4{, Al AL fli, Al for parton flavour
combinations u, = u — u, d, = d — d, g and u + d are given in Appendix A
of work: J.Pamplin, et al., JHEP 0207 (2002) 012.

The results of numerical calculations are presented in Fig. for the ratio:
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The evolution effects are getting larger with increasing hard scales. The
numerical estimations by integrating directly the evolution equations
(Gaunt, Stirling; Diehl, Kasemets, Keane) confirm also this conclusion.

The particular solutions of non-homogeneous equations contribute to the
inclusive cross section of DPS with a larger weight (different effective
cross section (Cattaruzza, Del Fabbro, Treleani; Ryskin, Snigirev;

Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling))

as compared to the solutions of homogeneous equations

(the “traditional” factorization component).

The latter solutions are usually approximated by a factorized form if the
initial nonperturbative correlations are absent. These initial correlation
conditions are a prior: unknown yet not quite arbitrary as they obey the
nontrivial sum rules which are imposed upon the evolution equations. The
problem of specifying the initial correlation conditions for the evolution
equations, which would obey exactly these sum rules and have the correct
asymptotic behavior near the kinematical boundaries, has been extensively
studied (Gaunt, Stirling; Snigirev; Ceccopieri; Chang, Manohar, Waalewijn;
Rinaldi, Scopetta, Vento; Golec-Biernat, Lewandowska).



The experimental effective cross section, o.3°, which is not measured
directly but is extracted by means of the normalization to the product of
two single cross sections:

0.7+3j
DPS — [a'eXp] —1
oVigii eff 1

appears to be dependent on the probing hard scale. It should DECREASE
with increasing the resolution scale because all additional contributions
to the cross section of double parton scattering are positive and increase.

In the above formula, 07/ and ¢/’ are the inclusive 7+ jet and dijets cross
sections, J])}Sg is the inclusive cross section of the v+3 jets events produced

in the double parton process.

It is worth noticing that the CDF and DO Collaborations extract o.;"
without any theoretical predictions on the 7+ jet and dijets cross sections,
by comparing the number of observed double parton v + 3 jets events in
ONE pp collision to the number of 7+ jet and dijets events occurring in
TWO separate pp collisions.



The recent D0 measurements represent this effective cross section, o4,

as a function of the second (ordered in the transverse momentum, p;) jet
ot . . . .
pr, Pr -, which can serve as a resolution scale. The obtained cross sections

reveal a tendency to be dependent on this scale.
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This observation can be interpreted as the first indication to the QCD
evolution of double parton distributions
(Snigirev; Flensburg, Gustafson, Lonnblad, Ster ).



Promising candidate processes to probe DPS at the LHC:

e same-sign W production (“pure”, BUT very rare)

® 7 + 3 jets (Tevatron also: D0, CDF)

e W(Z) + 2 jets (ATLAS — first measurement o.;; at LHC)
® 4 jets (Tevatron also: CDF)

® bb pair +2 jets

® bb pair + W boson

e pairs of heavy mesons (in particular, double J/¢ production)
(LHCb — first measurement of double J/v production )



J /1 pairs production

Azimuthal angle difference distribution after imposing cuts on the J/¢
transverse momenta for SPS
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It is rather difficult to disentangle the SPS and DPS (flat) modes: the
difference becomes visible only at sufficiently high cuts, where the production
rates are, indeed, very small.



Distribution over the rapidity difference between .J/¢) mesons. (Dotted
curve: leading-order SPS, dash-dotted curve: DPS)
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Selecting large rapidity difference events looks more promising to disentangle
the SPS and DPS modes



Double differential distribution for the leading-order SPS production mode
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It is qiute possible (BUT very rarely): hard TRIPLE parton scattering
(subprocesses A, B and ()

M/
oy



Similar to DPS with only the assumption of factorization of the three
hard parton subprocesses A, B and (', the inclusive cross section of a
TPS process in a hadron collision may be written in the following form

A,B,C
’(I‘PS ) — 2. /Fijk($17$29$3;b19b27b3; %7Q§7Q§)
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Here [';j.(x1, 72, 23; b1, ba, bs; QF, 3, Q3) are the triple parton distribution
functions, which depend on the longitudinal momentum fractions r;, -
and x3 and on the transverse position b, by and bjs of the three partons 7,
7 and £ undergoing the hard subprocesses A, B and C' at the scales (), ()»
and Q3. 64, 0 AB and o{ are the parton-level subprocess cross sections.b
is the impact parameter — the distance between centres of colliding (e.g.,
the beam and the target) hadrons in transverse plane.

The appropriate combinatorial factor (1/3!) should be taken into account
in the case of the indistinguishable final states.



As in the case of DPS it is typically taken that the triple parton distribution
functions may be decomposed in terms of the longitudinal and transverse
components as follows:

2 2 2
Fijk(mlaw2am3;b17b29b3; 19 Qza Qg)

= D}*(x1, @2, 233 Q%, Q3, Q3) £ (b1) f (b2) f (b3),

where f(b;) is supposed to be an universal function for all kind of partons
as before.

If one makes the further assumption that the longitudinal components
DM (1, 20, 25, Q% Q2, Q%) reduce to the product of three independent single
parton distributions,

Dzjk(wla L2y L3, Q Qza Qg) - D;L(ajl? QZ)D (w27 Qz)D ($33 Q3)
the cross section of TPS can be expressed in the simple form
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0% ps pae = [/ d2B(T (b)),

oo = [/ d°b(T(b))*] ™"

OTPS, fact = K * Oefr

with k£ = 0.82+£0.11 as the average of all typical parton transverse profiles
usually used in the literature (Gaussian, dipole fit, PYTHIA, HERWIG,....)

TPS in QCD:
A.M. Snigirev, Phys. Rev. D 94, 034026 (2016).

D. d’Enterria, A.M. Snigirev, arXiv:1612.05582 [hep-ph| (2016)
(PRL 118, 122001 (2017)).

D. d’Enterria, A.M. Snigirev, arXiv:1612.08112 [hep-ph] (2016).



m~parton distributions:
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Shelest, Snigirev, Zinovjev, Preprint ITP-83-46F, Kiev, 1983

allows us:
1) to justify the simple factorization form of cross sections

2) to write the evolution corrections to it
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Making the Fourier transformation
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one derives immediately the factorization result
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where “+...” denotes another 5 analogous contributions




The scale factor for single splitting contributions

2 = [(27)?6(q1 + a2 + q3) Fag(ar + 92) Foy(qs)
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(2m)? (2m)2 (2)*

= [ f3(b — bz + b’3) f(b) £ (b3) f (b'3)d*bd*b3d*b’s.

In a simple model where the transverse parton density is taken to have
Gaussian functional form, the ratio

2

2
OTPS,fact.00 __ E 1.7
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shows that the single splitting contributions to the cross section are
enhanced, relative to the factorization one, by the factor

2 X 3(combinatorial) x 1.7(scale) ~ 10.

So we conclude that the single splitting terms may provide a sizable
contribution to the cross section of TPS even if they constitute a small
correction to the triple factorized parton distribution functions.



