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Quantum Context

One-loop quantum corrections to General relativity in
4-dimensional spacetime produce ultraviolet divergences of
curvature-squared structure.
G. ’t Hooft and M. Veltman, Ann. Inst. Henri Poincaré 20, 69 (1974)

Inclusion of
∫
d4x
√
−g(αCµνρσC

µνρσ + βR2) terms ab initio in
the gravitational action leads to a renormalizable D = 4 theory,
but at the price of a loss of unitarity owing to the modes arising
from the CµνρσC

µνρσ term, where Cµνρσ is the Weyl tensor.
K.S.S., Phys. Rev. D16, 953 (1977).

[In D = 4 spacetime dimensions, this (Weyl)2 term is equivalent,
up to a topological total derivative via the Gauss-Bonnet theorem,
to the combination α(RµνR

µν − 1
3R

2)].
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Despite the apparent nonphysical behavior, quadratic-curvature
gravities continue to be explored in a number of contexts:

• Cosmology: Starobinsky’s original model for inflation was
based on a

∫
d4x
√
−g(−R + βR2) model.

A.A. Starobinsky 1980; Mukhanov & Chibisov 1981

This early model has been quoted (at times) as a good fit to
CMB fluctuation data from the Planck satellite.
J. Martin, C. Ringeval and V. Vennin, 1303.3787

• The asymptotic safety scenario considers the possibility that
there may be a non-Gaussian renormalization-group fixed
point and associated flow trajectories on which the ghost
states arising from the (Weyl)2 term could be absent.
S. Weinberg 1976, M. Reuter 1996, M. Niedermaier 2009
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Classical gravity with higher derivatives

Consider the gravitational action

I =

∫
d4x
√
−g(γR − αCµνρσCµνρσ + βR2) .

The field equations following from this higher-derivative action are

Hµν = γ

(
Rµν −

1

2
gµνR

)
+

2

3
(α− 3β)∇µ∇νR − 2α2Rµν

+
1

3
(α + 6β) gµν2R − 4αRηλRµηνλ + 2

(
β +

2

3
α

)
RRµν

+
1

2
gµν

(
2αRηλRηλ −

(
β +

2

3
α

)
R2

)
=

1

2
Tµν
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Linearized analysis of the vacuum (Tµν = 0) solutions of this
theory about flat space reveals the following weak-field dynamical
content:

I positive-energy massless spin-two

I negative-energy massive spin-two with mass m2 = γ
1
2 (2α)−

1
2

I positive-energy massive spin-zero with mass m0 = γ
1
2 (6β)−

1
2

K.S.S. 1978
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Nonlinear field equations for spherical symmetry

Use Schwarzschild coordinates

ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdϕ2)

One might expect that the field equations for A and B would be of
fourth order. However, there are some modest “gifts” arising from
the diffeomorphism invariance of the theory, which gives rise to
Bianchi-type identities for the field equations. One has

0 ≡ ∇µHµr = ∂rH
rr + ∂0H

0r + ∂θαH
θαr + ΓµµνH

νr + Γr
µνH

µν

Since the second and subsequent terms here are of maximum
fourth order in ∂r derivatives, one learns that H rr can be at most
of third order in ∂r derivatives. (Analogously in GR, G rr is only of
first order in ∂r derivatives.)
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The other field equations are indeed of fourth order in ∂r
derivatives. However, by ∂r differentiating H rr and taking an
appropriate combination of this together with the other field
equations, fourth-order ∂r derivatives can be eliminated, giving a
second third-order equation.

The remaining field equations are related to these two third-order
equations by Bianchi-type identities. So the system that one
actually has to solve for static and spherically symmetric
spacetimes is one of two third-order ordinary differential equations
in the radius r .

Accordingly, one expects a maximum of six integration constants
to appear in the general solution.

7 / 28



Static and spherically symmetric solutions

Now consider spherically symmetric gravitational solutions in the
linearised limit of the higher-curvature theory. In the linearized
theory, one finds the following general solution to the source-free
field equations HL

µν = 0, in which C ,C 2,0,C 2,+,C 2,−,C 0,+,C 0,−

are six integration constants:

A(r) =

1− C 20

r
− C 2+ em2r

2r
− C 2− e

−m2r

2r
+ C 0+ em0r

r
+ C 0− e

−m0r

r
+ 1

2C
2+m2e

m2r − 1
2C

2−m2e
−m2r − C 0+m0e

m0r + C 0−m0e
−m0r

B(r) =

C +
C 20

r
+ C 2+ em2r

r
+ C 2− e

−m2r

r
+ C 0+ em0r

r
+ C 0− e

−m0r

r
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• As one might expect from the dynamics of the linearized
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

• When coupling to non-gravitational matter fields is made via
standard hµνTµν minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function
Tµν = δ0

µδ
0
νMδ3(~x), for example, one finds

A(r) = 1 + κ2M
8πγr −

κ2M(1+m2r)
12πγ

e−m2r

r − κ2M(1+m0r)
24πγ

e−m0r

r

B(r) = 1− κ2M
8πγr + κ2M

6πγ
e−m2r

r − κ2M
24πγ

e−m0r

r

with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.
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Frobenius Asymptotic Analysis

Asymptotic analysis of the field equations near the origin leads to
study of the indicial equations for behavior as r → 0. K.S.S. 1978

Let

A(r) = asr
s + as+1r

s+1 + as+2r
s+2 + · · ·

B(r) = btr
t + bt+1r

t+1 + bt+2r
t+2 + · · ·

and analyze the conditions necessary for the lowest-order terms in
r of the field equations Hµν = 0 to be satisfied. This gives the
following results, for the general α, β higher derivative theory:

(s, t) = (1,−1) with 5 free parameters

(s, t) = (0, 0) with 3 free parameters

(s, t) = (2, 2) with 6 free parameters

Lü, Perkins, Pope & K.S.S., 1508.00010
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(2,2) solutions without horizons

For asymptotically flat solutions with nonzero spin-two Yukawa
coefficient C 2− 6= 0, one finds numerical solutions that can continue
on in to mesh with the (2,2) family obtained from Frobenius
asymptotic analysis around the origin. Such solutions have no horizon;
numerical solutions have been found in the m2 = m0 theory
B. Holdom, Phys.Rev. D66 (2002) 084010 and in the R + C 2 theory
Lü, Perkins, Pope & K.S.S., 1508.00010

Horizonless solution in R + C 2 theory, behaving as r2 in both A(r) and B(r)

as r → 0.
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Wormholes

Another solution type found numerically has the character of a
“wormhole”. Such solutions can have either sign of M ∼ −C 20

and either sign of the falling Yukawa coefficient C 2−. As an
example, one finds a solution with M < 0 in the R − C 2 theory

2.8 3.0 3.2 3.4 3.6 3.8 4.0
r

0.1

0.2

0.3

0.4

0.5

B(r)

f(r)

In this solution, f (r) = 1/A(r) reaches zero at a point where
B(r) = a2

0 > 0. Making a coordinate change r − r0 = 1
4ρ

2, one
then has

ds2 = −(a2
0 + 1

4B
′(r0)ρ2)dt2 +

dρ2

f ′(r0)
+ (r2

0 + 1
2 r0ρ

2)dΩ2

which is Z2 symmetric in ρ and can be interpreted as a
“wormhole”, with the r < r0 region excluded from spacetime.
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Black hole solutions

If one assumes the existence of a horizon and assumes also
asymptotic flatness at infinity, then a no-hair theorem for the trace of
the field equations implies that the Ricci scalar must vanish: R = 0.
W. Nelson, 1010.3986; H. Lü, A. Perkins, C.N. Pope & K.S.S., 1508.00010 This significantly
simplifies the analysis of the solutions. The field equations then
become identical to those in the β = 0 case, i.e. with just a (Weyl)2

term and no R2 term in the action.

Counting parameters in an expansion around the horizon, subject to
the R = 0 condition, one finds just 3 free parameters. This is the
same count as in the (1,-1) family of an expansion around the origin
when subjected to the R = 0 condition. So asymptotically flat
solutions with a horizon must belong to the (1-1) family, which
contains the Schwarzschild solution itself. The Schwarzschild solution
is characterized by two parameters: the mass M of the black hole,
plus a trivial g00 normalization at infinity. So in the higher-derivative
theory, there is just one “non-Schwarzschild” (1,-1) parameter.
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Away from Schwarzschild in the (1,-1) family

Considering variation of this “non-Schwarzschild” parameter away
from the Schwarzschild value, it is clear that changing it generally
has to do something to the solution at infinity. For a solution
assumed to have a horizon, and holding R = 0, the only thing that
can happen initially is that the rising exponential is turned on, i.e.
asymptotic flatness is lost. So, for asymptotically flat solutions
with a horizon in the vicinity of the Schwarzschild solution, the
only spherically symmetric static solution generally is Schwarzschild
itself.

One concludes that the Schwarzschild black hole is at least in
general isolated as an asymptotically flat solution with a horizon.
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Non-Schwarzschild Black Holes Lü, Perkins, Pope & K.S.S., 1508.00010; 1502.01028

Now the question arises: what happens when one moves a finite
distance away from Schwarzschild in terms of the (1,-1)
non-Schwarzschild parameter? Does the loss of asymptotic flatness
persist, or does something else happen, with solutions arising that
cannot be treated by a linearized analysis in deviation from
Schwarzchild?

This can be answered numerically. In consequence of the trace
no-hair theorem, the assumption of a horizon together with
asymptotic flatness requires R = 0 for the solution, so the
calculations can effectively be done in the R − C 2 theory with
β = 0, in which the field equations, thankfully, can be reduced to a
system of two second-order equations.
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The study of non-Schwarzschild solutions is more easily carried out
with a metric parametrization

ds2 = −B(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) ,

i.e. by letting A(r) = 1/f (r).

For B(r) vanishing linearly in r − r0 for some r0, analysis of the
field equations shows that one must then also have f (r) similarly
linearly vanishing at r0, and accordingly one has a horizon. One
can thus make near-horizon expansions

B(r) = c
[
(r − r0) + h2 (r − r0)2 + h3 (r − r0)3 + · · ·

]
f (r) = f1 (r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + · · ·

and the parameters hi and fi for i ≥ 2 can then be solved-for in
terms of r0 and f1. For the Schwarzschild solution, one has
f1 = 1/r0, so it is convenient to parametrize the deviation from
Schwarzschild using a non-Schwarzschild parameter δ with

f1 =
1 + δ

r0
.
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The task then becomes that of finding values of δ 6= 0 for which
the generic rising exponential behavior as r →∞ is suppressed.
What one finds is that there does indeed exist an asymptotically
flat family of non-Schwarzschild black holes which crosses the
Schwarzschild family at a special horizon radius rLich0 . For α = 1

2 ,
one finds the following phases of black holes:

M

r
0

Black-hole masses as a function of horizon radius r0, with a crossing point

at rLich0 ' 0.876. The red family denotes Schwarzschild black holes and

the blue family denotes non-Schwarzschild black holes.
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The Lichnerowicz Operator

Now let us study in some more detail the point where the new
black hole family crosses the classic Schwarzschild solution family.
We can study solutions in the vicinity of the Schwarzschild family
by looking at infinitesimal variations of the higher-derivative
equations of motion around a Ricci-flat background. For the δRµν
variation of the Ricci tensor away from a background with Rµν = 0
one obtains

γ(δRµν − 1
2gµν δR) + 2(β − 1

3α)(gµν�−∇µ∇ν)δR

−2α� (δRµν − 1
2gµν δR)− 4αRµρνσ δR

ρσ = 0 .

18 / 28



Restricting attention to asymptotically flat solutions with horizons,
however, we know from the trace no-hair theorem that R = 0 so
δR = 0 and the δRµν equation simplifies, upon recalling that
m2

2 = γ
2α , to (

∆L + m2
2

)
δRµν = 0 ,

where the Lichnerowicz operator is given by

∆L δRµν ≡ −�δRµν − 2Rµρνσ δR
ρσ .

Restricting attention to the m2
2 > 0 nontachyonic case, one sees

that black hole solutions deviating from Schwarzschild must have a
λ = −m2

2 negative Lichnerowicz eigenvalue for δRµν .
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The Gross-Perry-Yaffe eigenvalue

In a study of the thermodynamic instability of the Euclideanised
Schwarzschild solution in Einstein theory, Gross, Perry and Yaffe
Phys.Rev. D25 (1982), 330 found that there is just one normalisable
negative-eigenvalue mode of the Lichnerowicz operator for
deviations from the Schwarzschild solution. For a Schwarzschild
solution of mass M, it is

λ ' −0.192M−2

i.e. m2M ' 0.438 '
√
.192

I Comparing with the numerical results for the new black hole
solutions of the higher-derivative gravity theory, this
corresponds nicely with the point where the new black hole
family crosses the Schwarzschild family.
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Time Dependent Solutions and Stability

Now consider time-dependent perturbations δRµν away from a
Schwarzschild solution in order to search for possible instabilities
within the higher-derivative theory. For this one needs to analyse
the Lichnerowicz condition (∆L +m2

2) δRµν = 0 for time-dependent
solutions. For asymptotically flat solutions with a horizon, we still
have the R = 0 consequence of the trace no-hair theorem, so
δR = 0. Then from the Bianchi identity ∇µRµν = 1

2∇νR we
obtain ∇µδRµν = 0, so δRµν must be a “TT” quantity.

The “TT” condition for δRµν already indicates a similarity to the
situation that obtains in Pauli-Fierz theory, where the linearised
field equations for a massive spin-two field ψµν imply
∂µψµν = ψνν = 0.
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Gregory-Laflamme Instability

Analysis of the possibility of growing (Re(ν) > 0) perturbations
can be approached using WKB methods
B.F. Schutz and C.M. Will, Ap.J. 291:L33 (1985) or numerically. But in fact, the
answer has been known for some time from the 5D string
R. Gregory and R. Laflamme, PRL 70 (1993) 2837 . Considering perturbations about
the 5D black string ds2

(5) = ds2
(4) + dz2

(
h

(4)
µν hµz
hzν hzz

)
(1)

where the z dependence is assumed to be of the form e ikz , one

finds that h
(4)
µν satisfies an equation of the same Lichnerowicz form

(∆L + k2) h
(4)
µν = 0 as for δRµν Y.S. Myung, Phys.Rev. D88 (2013) . This form is

also found for perturbations about the Schwarzschild solution in
dRGT nonlinear massive gravity.
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The Gregory-Laflamme instability is an S-wave (` = 0) spherically
symmetric instability from the 4D perspective. In the
higher-derivative theory, it exists for low-mass Schwarzschild black
holes, which disappears for black hole masses M ≥ Mmax where

m2Mmax

M2
Pl

= .438

This is precisely the crossing point between the family of new black
holes and the Schwarzschild family.

Note that this monopole instability depends on the presence in the
theory of the m2 massive spin-two mode.
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Thermodynamic Implications for Instability

The D = 4 Wald entropy formula

S = −1
8

∫
+

√
hdΣ εabεcd

∂L

∂Rabcd

gives results that respect the first law of black-hole
thermodynamics, dM = TdS .

For non-Schwarzschild black holes in D = 4, one obtains the
following numerical relations between mass, temperature and
entropy:

MNSch ≈ 0.168 + 0.131 S − 0.00749S2 − 0.000139S3 + · · ·
TNSch ≈ 0.131− 0.0151S − 0.000428 S2 + · · ·
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Recall that for Schwarzschild black holes, one has the classic
mass-temperature relation MSch = 1

8πT . Eliminating the entropy
for the non-Schwarzschild black holes, one obtains the
corresponding relations between black-hole mass and temperature
for Schwarzschild and non-Schwarzschild black holes:

0.05 0.10 0.15 0.20 0.25

- 2

- 1

0

1

2

T

M

Mass versus temperature relations for Schwarzschld (dashed red) and non-

Schwarzschild (solid blue) black holes.
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Free Energy

Consequently, for the free energy F = M − TS , one has the
following situation, showing a switchover between the
Schwarzschild and non-Schwarzschild solutions:

0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

T

F

Schwarzschild BH
non Schwarzschild BH

Free energy for Schwarzschild (dashed red) and non-Schwarzschild (blue) black

holes. Lower free energy corresponds to greater stability.
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We therefore have the following suggested stability picture:

Schwarzschild BH
non Schwarzschild BH

0.5 1.0 1.5 2.0

- 4

- 3

- 2

- 1

1 (cold) Stable

(hot) Unstable

(cold) Possibly stable

(hot) Possibly unstable

Lichnerowicz crossing
& stability boundary

r0

M

Classical stability regimes. The dashed red line denotes Schwarzschild

black holes and the solid blue line denotes non-Schwarzschild black holes.
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Outlook

• Taking the fourth order field equations seriously for gravity
including quadratic curvatures in the action leads to a rich
space of asymptotically flat solutions including horizonless
solutions, wormholes and both Schwarzschild and
non-Schwarzschild black hole solutions.

• The branch of non-Schwarzschild black holes bears an
intimate relation to black-hole stability: the branching point
mass on the Schwarzschild family is also the upper limit of
classical instability of the Schwarzschild solution.

• Thermodynamic considerations similar to the conjecture of
Gubser and Mitra JHEP 0108 (2001) 018 on the relationship between
thermodynamic and time-dependent dynamical instabilities
suggest that there is a switchover of stability to the
non-Schwarzschild branch of black-hole solutions for black
holes with radii smaller than the Lichnerowicz crossing point.
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