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Wormholes – spacetime bridges

Wormholes interpolate between different universes or between
different parts of the same universe. Could supposedly be used for
interstellar and time travels.



Some history

/Einstein-Rosen, 1935/ – Schwarzschild black hole has two
exterior regions connected by a bridge. The ER bridge is
spacelike and cannot be traversed by classical objects.

/Maldacena-Susskind, 2013/ – the ER bridge may connect
quantum particles to produce quantum entanglement and the
Einstein-Pololsky-Rosen (EPR) effect, hence ER=EPR.



Some history

/Wheeler, 1957/ wormholes may provide geometric models of
elementary particles – handles of space trapping inside an
electric flux.

/Misner, 1960/ Wormholes can describe initial data for the
Einstein equations. The time evolution of these data
corresponds to the black hole collisions of the type observed in
the recent GW150914 event.

/Morris, Thorn, Yurtsever, 1988/ wormholes traversable by
classical object may be supported by vacuum polarisation.



Can wormholes be solutions of Einstein equations ?

ds2 = −Q2(r)dt2 + dr2 + R2(r)(dϑ2 + sin2 ϑdϕ2),

Q(r)

R(r)
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⇒ the Null Energy Condition (NEC) must be violated.
/Tµνv

µvν = Rµνv
µvν ≥ 0 for any null vµ/



NEC violation

The general case without symmetry ⇒ topological censorship:
compact two-surface of minimal area can exit if only NEC is
violated /Friedman, Schleich, Witt, 1993/ ⇒ traversable
wormholes are possible if only energy is negative, for example, due
to

vacuum polarization

exotic matter: phantom fields, etc.

Wormholes may exist in alternative gravity models:

Gauss-Bonnet brainworld, etc.

theories with non-minimally coupled fields (Horndeski)

massive (bi)gravity



Best known example – phantom-supported wormhole

L = R+2(∂ψ)2

Bronnikov-Ellis wormhole:

ds2 = −dt2 + dr2 + (r2 + a2)(dϑ2 + sin2 ϑdϕ)2, ψ = arctan
( r
a

)
;

r ∈ (−∞,∞)

Figure: Isometric embedding of the equatorial section of the BE
wormhole to the 3-dimensional Euclidean space



Wormholes without phantom field

Write a phantom field solution in the Weyl form,

ds2 = −e2Udt2 + e2U
(
e2k(dρ2 + dz2) + ρ2dϕ2

)
, ψ = ψ

A new solution of the same form is obtained by swapping

U ↔ ψ, k → −k

hence by setting

Unew = ψ, ψnew = U, knew = −k

The BE wormhole is ultrastatic, U = 0, hence the new solution is
vacuum, ψnew = 0, but it keeps the original topology with two
asymptotic regions – wormhole. The negative energy is hidden in
the singularity.



I. Gravitating scalar field



Axial symmetry

L = R − 2ε (∂Φ)2

ε = +1: ordinary scalar Φ ≡ φ
ε = −1: phantom Φ ≡ ψ

Static, axially symmetric system

ds2 = −e2Udt2 + e−2U
{
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

}
where U, k ,Φ depend on ρ, z .



Field equations
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Target space symmetries

preserve spherical symmetry:

rotations

(
U
φ

)
→
(

cosα sinα
− sinα cosα

)(
U
φ

)
, k → k

boosts

(
U
ψ

)
→
(

coshα sinhα
sinhα coshα

)(
U
ψ

)
, k → k

interchange BE wormhole and ring wormhole:

swap U ↔ ψ, k → −k

do not intermix scalar field and gravity amplitudes:

scaling U → λU, k → λ2k , Φ→ λΦ

tachyon: U → ln ρ− U, k → k − 2U + ln ρ, Φ→ Φ

Acting with this on vacuum metrics yields new solutions.



Simplest vacuum Weyl metrics



One rod – Schwarzschild

ds2 = −e2Udt2 + e−2U
{
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

}
with

U(ρ, z) =
1

2
ln

(
R −m

R + m

)
= −1

2

∫ m

−m

dζ√
ρ2 + (z − ζ)2

k(ρ, z) =
1

2
ln

(
R2 −m2

R+R−

)
where

R =
1

2
(R+ + R−), R± =

√
ρ2 + (z ±m)2.

U is the Newtonian potential of a massive rod of length 2m with
mass density 1/2.



Two rods

U = U1 + U2, k = k1 + k2 + k12 ,

where (with a = 1, 2)

Ua =
1

2
ln

(
Ra −ma

Ra + ma

)
, ka =

1

2
ln

(
(Ra)2 − (ma)2

Ra+Ra−

)
,

k12 =
1

2
ln

(
(R1+R2− + z1+z2− + ρ2)(R1−R2+ + z1−z2+ + ρ2)

(R1+R2+ + z1+z2+ + ρ2)(R1−R2− + z1−z2− + ρ2)

)
,

with

za± = z − za ±ma, Ra± =
√
ρ2 + (za±)2 , Ra =

1

2
(Ra+ + Ra−)

k 6= 0 on the part of symmetry axis between the rods – strut
/Israel and Khan 1964/ Similarly for many rods.



Point masses

U = −m

R
, k = −m2ρ2

2R4
,

with R =
√
ρ2 + z2. For two masses m± at z = ±m one has

U = −m+

R+
− m−

R−
,

k = −
m2

+ρ
2

2(R+)4
−

m2
−ρ

2

2(R−)4
+

m+m−
2m2

(
ρ2 + z2 −m2

R+R−
− 1

)
with R± =

√
ρ2 + (z ±m)2. /Chazy, Curzon 1924/



Summary of part I

Applying the target space dualities to the vacuum Weyl metric
produced by massive rods and points gives all known and also
large classes of new static solutions for gravity-coupled scalar
field.

These are, for example, the Fisher-Janis-Robinson-Winicour
solutions and their generalizations to axially symmetric case.

These are, for example, the Bronnikov-Ellis wormholes and
their generalizations to axially symmetric case.

Many more other new solutions.



II. Vacuum wormholes



One rod – Schwarzschild

Scaling U → λU, k → λ2k (prolate vacuum metrics)

U(ρ, z) =
λ

2
ln

(
R −m

R + m

)
, k(ρ, z) =

λ2

2
ln

(
R2 −m2

R+R−

)
R =

1

2
(R+ + R−), R± =

√
ρ2 + (z ±m)2

m→ ia, λ→ iσ (oblate vacuum metrics)

U = σ arctan

(
X

a

)
, k =

σ2

2
ln

(
X 2 + Y 2

X 2 + a2

)
X + iY =

√
ρ2 + (z + ia)2

two sheets of the square root ⇒ double-sheeted topology with
two asymptotically flat regions ⇒ wormhole. For σ = 1 the
swap U ↔ ψ, k → −k gives the Bronnikov-Ellis wormhole.



Global wormhole coordinates

z = r cosϑ, ρ =
√

r2 + a2 sinϑ

with r ∈ (−∞,∞) (double covering) yields

ds2 = −e2Udt2 + e−2Udl2, U = σ arctan
( r
a

)
,

dl2 =

(
r2 + a2 cos2 ϑ

r2 + a2

)1+σ2 [
dr2 + (r2 + a2)dϑ2

]
+ (r2 + a2) sin2 ϑdϕ2 .

Close to the axis cosϑ ≈ 1, taking σ → 0 gives wormhole metric

ds2 = −dt2 + dx2 + (x2 + a2)dΩ2

Wormhole throat is at r = 0. The Weyl coordinates (ρ, z) cover
either the r < 0 part or the r > 0 wormhole parts.



Wormhole topology

Figure: The r , ϑ coordinates cover the whole of the manifold, each Weyl
chart covers only a half. The Weyl charts have branch cuts. A winding
around the ring in the x , ϑ coordinates corresponds to two windings in
Weyl coordinates.



Ring wormhole

Metric is singular at the ring in the equatorial plane at r = 0
ϑ = π/2. In its vicinity

ds2 = −dt2 + dR2 + R2α2 + a2dϕ2 + . . .

with α ∈ [0, (2 + σ2)2π) ⇒ a negative angle deficit

δ = −(σ2 + 1)2π

⇒ a conical singularity generated by an infinitely thin ring of
radius a and of negative tension (energy per unit length)

T = −(1 + σ2)c4

4G

⇒ the wormhole is supported by a negative tension ring.



Ring wormhole with locally flat geometry

In the limit σ → 0 one has

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2

while in Weyl coordinates the metric is manifestly flat,

ds2 = −dt2 + dρ2 + dz2 + ρ2dϕ2.

However, the topology is still non-trivial since for r ∈ (−∞,∞)
one needs two (ρ, z) patches, one for r > 0 and the other for
r < 0, to cover the manifold. Therefore, the winding angle around
the ring core ranges from zero to 4π hence the ring is still there
and has the tension

T = −c4/4G

the curvature is zero everywhere outside the ring.



Geodesics

Geodesics are straight lines. Those which miss the ring always stay
at the same chart. Those threading the ring pass to the other chart
and become invisible – the ring literally creates a hole in flat space.

Figure: Particles entering the ring are not seen coming out from the other
side



Energy

To create a ring of radius R one needs the negative energy

E = 2πRT = −2πR
c4

4G

To create a ring of radius R = 1 metre one needs a negative
energy equivalent to the mass of Jupiter.

Small rings can probably appear and disappear in quantum
fluctuations. Particles passing through the ring during its existence
will disappear – loss of quantum coherence.

The ring can probably be replaced by a thin tours. The negative
energy could probably be associated to quantum fluctuations inside
the torus.



Summary of part II

In vacuum GR there are wormholes sources by negative
tension rings carrying a negative energy. The ring encircles
the wormhole throat. Solutions depend on a parameter σ.

For σ 6= 0 the ring supports a power-law singularity of the
Weyl tensor and a conical singularity of the Ricci tensor.

For σ → 0 the Weyl tensor vanishes, the geometry becomes
locally flat, but there remains the conical singularity of the
Ricci tensor corresponding to the negative energy
T = −c4/(4G ) along the ring. The ring “cuts a hole” in flat
space.



III. Ring wormhole as the
M → 0 limit

of Kerr spacetime



Minkowski space in spheroidal coordinates

ds2 = −dt2 + dρ2 + dz2 + ρ2dϕ2.

expressed in oblate spheroidal coordinates r ∈ [0,∞), ϑ ∈ [0, π)

z = r cosϑ, ρ =
√
r2 + a2 sinϑ

reads

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2

Coordinate singularity at the ring r = 0, ϑ = π/2. Geodesic

dr

ds
= ±

√
E2 − µ2

is discontinuous since one is bound to chose different signs.



Analytic continuation to r ∈ (−∞,∞)

If r is allowed to be negative – no need to change sign in geodesic
equation; geodesics analytically continue. The metric is the same

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2 ,

and close to the ring r = 0, ϑ = π/2 this reduces to

ds2 = −dt2 + dR2 + R2dα2 + a2dϕ2 + . . .

where α ∈ [0, 4π] hence the negative angle deficit and the
distributional conical singularity of the curvature. The geometry
can be covered by two flat charts (ρ+, z+) and (ρ−, z−)

ds2 = −dt2 + dρ2± + dz2± + ρ2±dϕ
2



Wormhole topology

Figure: Analytic continuation from one flat chart to the other. A contour
around the string core makes one revolution of 2π, then passes to the
other chart, and only after the second revolution of 2π closes – the angle
increment is 4π.



Moral

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2

describes flat Minkowski space if r ∈ [0,∞) and locally flat
wormhole if r ∈ (−∞,∞). This is the M → 0 limit of Kerr

ds2 = −dt2 +
2Mr

Σ

(
dt − a sin2 ϑ dϕ

)2

+ Σ

(
dr2

∆
+ dϑ2

)
+ (r2 + a2) sin2 ϑdϕ2 ;

∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 ϑ,

but for Kerr r ∈ (−∞,∞) since the geodesics pass to the r < 0
region.



Kerr geodesics

1

µ2

(
dr

ds

)2

+ V (r) = E

As M → 0 the geodesics freely move in r ∈ (−∞,∞).

�

�

�
�

�

�

�(�)

-10 -5 5 10

-2

-1

1

2

Figure: Potential V (r) = −2Mr/(r2 + a2) in the geodesic equation

⇒ zero mass limit of Kerr is the wormhole



Kerr-Schild: t, r , ϑ, ϕ→ T , ρ, z , ϕ

ρ =
√

r2 + a2 sinϑ, z = r cosϑ,

T = t +

∫
2Mr

∆
dr , φ = ϕ+

∫
2Mar

Σ∆
dr ,

which yields

ds2 = − dT 2 + dρ2 + ρ2dϕ2 + dz2

+
2Mr3

r4 + a2z2

(
rρ

r2 + a2
dρ− ar sin2 ϑdϕ+

z

r
dz + dT

)2

For M → 0 the metric is flat. However, one needs two Kerr-Schild
chars: (ρ+, z+) for r > 0 and (ρ−, z−) for r < 0. These two charts
are glued together precisely as was shown before (Hawking-Ellis),
hence for M → 0 one obtains the two-sheeted wormhole topology
and a conical singularity.



Fig.27 from Hawking-Ellis



Summary of part III

Kerr spacetime has the two-sheeted topology also in the
M → 0 limit. The limiting spacetime is locally flat but it
cannot be globally flat Minkowski space since it is
topologically non-trivial.

The Kerr ring supports a power-law singularity of the Weyl
tensor that vanishes for M → 0, but it also supports a
distributional singularity of the Ricci tensor that remains even
in the M → 0 limit. Carter ’68: in the special case where M
vanishes there must still be a curvature singularity at Σ = 0,
although the metric is then flat everywhere else.

It follows that the M → 0 limit of the Kerr spacetime is the
wormhole sourced by the negative tension ring – the simplest
way to produce wormholes.


