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Suppose there exists such a fundamental theory of 
gravity, in which black holes do not have singularities. 

What might be properties of black holes in such a 
theory? It is natural to expect, that the modified 
theory of gravity should include some fundamental 

length scale l.



A natural requirement to nonsingular black hole metrics
is that at large radius they correctly reproduce the
Schwarzschild black hole solution of the general 
relativity. The curvature inside the black hole, being
regular, nevertheless depends on the value of its mass, 
angular momentum, etc.. In a general case it may 
infinitely grow for a special limit of these parameters. 
The requirement, that it does not happen and the 
curvature always remains finite and is limited by some 
fundamental value (      ), can be imposed as an 
additional principle, which restricts the variety of 
nonsingular black-hole models. The limiting curvature 
principle was first formulated by Markov (1982).
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For a spherically symmetric black hole this principle implies that the 
apparent horizon cannot cross the center r = 0. In other words, besides 
the outer part of the apparent horizon there should also be an inner part.
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When a black hole evaporates, the event horizon does not exist 
and the apparent horizon is closed. Such a model was first 
proposed by V. Frolov and G. Vilkovisky (Phys. Lett. B 106, 307, 1981.)

𝑑𝑠2 = −𝑓(𝑣, 𝑟) 𝑑𝑣2 + 2 𝑑𝑣 𝑑𝑟 + 𝑟2𝑑𝜔2 .

Condition for an apparent horizon 𝑔rr = 𝑓 𝑣, 𝑟 = 0

We study quantum radiation of massless particles 
from nonsingular black holes. To attack this problem 
we assume a number of simplifications. 

To describe a spherically symmetric black hole which 
has finite life-time we assume that a black hole is 
formed a result of the collapse of the null shell of 
positive mass M and ends its existence as a result of 
collapse of another null shell with negative mass -M . 
We call it a sandwich black hole. 

Certainly such a model is quite different from a “real” 
evaporating black hole. However some of its 
predictions are robust and remain valid for more 
realistic “smooth models”. 
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We study quantum radiation of massless particles 
from nonsingular black holes. To attack this problem 
we assume a number of simplifications. 

To describe a spherically symmetric black hole which 
has finite life-time we assume that a black hole is 
formed a result of the collapse of the null shell of 
positive mass M and ends its existence as a result of 
collapse of another null shell with negative mass -M . 
We call it a sandwich black hole. 

Certainly such a model is quite different from a “real” 
evaporating black hole. However some of its 
predictions are robust and remain valid for more 
realistic “smooth models”. 

𝑑𝑠2 = −𝑓(𝑣, 𝑟) 𝑑𝑣2 + 2 𝑑𝑣 𝑑𝑟 + 𝑟2𝑑𝜔2 .



𝑓(𝑣, 𝑟)|𝑟→∞ = 1

𝑑𝑠2 = −𝛼2𝑓𝑑𝑣2 + 2𝛼 𝑑𝑣𝑑𝑟 + 𝑟2𝑑𝜔2

𝛼(𝑣, 𝑟)|𝑟→∞ = 1

The most general spherically symmetric metric in the four-dimensional
spacetime can be written in the form

The function  f at spatial infinity must take the value 1 in order to escape a 
solid angle deficit 

Using an ambiguity in the choice of 𝑣, we impose the (gauge fixing) condition

Non-singular black holes imply the regularity of the metric at the center 𝑟 =0 . 
It leads to the conditions

𝑓 𝑣, 𝑟 = 1 + 𝑓2 𝑣 𝑟2 +⋯ ,

𝛼(𝑣, 𝑟) = 𝛼0(𝑣) + 𝛼2(𝑣) 𝑟
2+⋯ .

𝑑𝜏 = 𝛼0(𝑣)𝑑𝑣

In a general case, when                     , the rate of the proper time   at the 
center differs from the rate of time

𝛼 𝑣, 𝑟 ≠ 1



The Killing vector 𝜉 = 𝜉𝛼𝜕𝛼 = 𝜕𝑣

𝜉2 = −𝛼2𝑓

Surface gravity 𝜅 =
1

2
𝛼𝜕𝑟𝑓 |𝐻

𝑓 = 1 −
2𝑀𝑟2

𝑟3 + 2𝑀𝓁2

𝛼 = 1

Here  𝓁 is some fundamental 
scale larger than the Planck 
length. 

𝑑𝑠2 = −𝛼2𝑓𝑑𝑣2 + 2𝛼 𝑑𝑣𝑑𝑟 + 𝑟2𝑑𝜔2



We assume now that a regular metric 

describes the black hole, which is created as a result 
of a spherical collapse at the moment 𝑣 = 0, and which 
disappears after some finite time q.

𝑑𝑠2 = − 𝛼2𝑓 𝑑𝑣2 + 2𝛼 𝑑𝑣𝑑𝑟 + 𝑟2 𝑑𝜔2

𝑓 = 𝛼 = 1 for 𝑣 < 0 and 𝑣 > q

Consider an incoming radial null ray described by the 
equation 𝑣 = const . It propagates from the past null 
infinity 𝐼− and reaches the center 𝑟 = 0 . After 
passing the center, it becomes an outgoing radial null 
ray.
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flat metric

flat metric

nonsingular black hole
𝑢− = 𝑣 − 2𝑟

𝑢+ = 𝑣 − 2𝑟
We choose the retarded null time 
parameter 𝑢− so that at 𝑟=0  one has 
𝑢− = 𝑣 . In the initial flat domain, where 
𝑣 < 0

However, in a general case, for  𝑣 > 0
this relation between 𝑢− and 𝑣 is not 
valid. In particular, in the final flat 
domain, where 𝑣 > 𝑞 , the null coordinate 
𝑢+ = 𝑣 − 2𝑟 differs from 𝑢− , and one 
has relations 

𝑢− = 𝑣 − 2𝑟

)𝑢+ = 𝑢+ 𝑢− , 𝑢− = 𝑢−(𝑢+
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I) Consider first outgoing rays with  𝑢−< 0 .

They intersect the first null shell at 𝑟− = −
1

2
𝑢−

𝑑𝑟

𝑑𝑣
=
1

2
𝛼 𝑣, 𝑟 𝑓(𝑣, 𝑟)

Denote by 𝑟(𝑣) a solution on the 
differential equation

with the initial condition 

This solution describes an outgoing null 
ray of type I.

𝑟 0 = 𝑟− = −
1

2
𝑢−

II)-III)  Similarly we define rays of type II and III.
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Standard model

𝑝 = 8, 𝑞 = 30, 𝓁= 1

𝑝 = Τ𝑟1 𝑟21 2 0
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Modified model

𝑝 = 8, 𝑞 = 30, 𝓁= 1

𝛼 =
𝑟𝑛 + 1

𝑟𝑛 + 1 + 𝑝𝑘
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The dimensionless surface gravities 

calculated for 𝛼 =1 at each horizon                               are

For the modified models

𝜅 =
1

2
𝛼𝜕𝑟𝑓 |𝐻

𝜅1 = +
𝑝 − 1)(𝑝 + 2

)2𝑝(𝑝2 + 𝑝 + 1
,

𝜅2 = −
𝑝 − 1)(2𝑝 + 1

)2(𝑝2 + 𝑝 + 1

𝑟1 = 𝑝 , 𝑟2= 1

1,2 1,2 1,2| ( ) | .modified standardr  

Outgoing radial null rays in the black-hole interior are accumulated in the 
vicinity of the inner horizon. This is a consequence of negative value of the 
surface gravity at the inner horizon. As a result one can expect that 
particles emitted from the inner horizon at the final stage of the black 
hole evaporation would have large blueshift. 

1 2( ) ~ 1, ( ) 1.r r  
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The action for a two-dimensional conformal scalar field

The two-dimensional metric

Let  E be the dimensionless rate of the energy emission 𝑇𝑣𝑣= Τ𝓁𝑃𝑙 𝓁 2 E

Where

Another representation in terms of the Schwarzian derivative  

𝑆 = −
1

2
න𝑑2 𝑥 −𝑔 𝛻 ො𝜑 2

𝑑𝑠2 = −𝛼2𝑓𝑑𝑣2 + 2𝛼 𝑑𝑣𝑑𝑟

E =
1

48𝜋
−2

𝑑2𝑃

𝑑𝑢2
+

𝑑𝑃

𝑑𝑢

2

𝑃 = 𝑙𝑛|
𝑑𝑢−
𝑑𝑢+

| )𝑢− = 𝑢−(𝑢+

E = −
1

24𝜋
{𝑢−, 𝑢+}, {𝑦, 𝑥} =

𝑦‴

𝑦′
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The total energy emitted during existence of 
the black hole is always positive
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To compute the energy fluxes E and the gain function  𝛽 =
𝑑𝑢−

𝑑𝑢+
= 𝑒𝑃,

one needs to know the map )𝑢−(𝑢+ .
The gain function 𝛽 describes amplification of the particles energy, i.e.,
The ration of the final energy of a photon to its initial energy
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The map )𝑢−(𝑢+ .
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The Hawking result for the quantum energy flux from a black hole is correctly 
reproduced, when the mass parameter p and the lifetime of the blackhole  q 
are large. The shape of the curve is almost the same for both standard and 
modified models. Duration of the almost constant tail of quantum radiation is 
approximately equal to  q  (lifetime of the black hole).

E𝐻𝑎𝑤𝑘 =
𝜅1

2
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The numerical calculations for large black holes  are in agreement 
with the Hawking result for sandwich black holes, provided the 
duration parameter  q is large enough. At the moment of time when 
the outer horizon crosses the second shell there exists a flash of 
the radiation. The radiation emitted between the outer- and inner-
horizons remains relatively small. The very intensive outburst of the 
energy occurs near the inner horizon. We choose small value of q
just to be able to show on the plot the radiation from all the domains. 
For higher value of the duration parameter q the amplitude of the 
burst radiation grows as )∼ 𝑒𝑥𝑝(−2𝜅2𝑞 , while the width of the peak 
decreases as  )∼ 𝑒𝑥𝑝(𝜅2𝑞 ( keep in mind that as 𝜅2 < 0).



For a standard sandwich black-hole model the metric between two null 
shell was chosen to coincide with the Hayward. A characteristic property 
of this geometry is that a falling photon, when it reaches the center has 
the same energy, as at the infinity. In other words, there is no red- or 
blue- shift for such photons. One of the consequences of this assumption 
is that the surface gravity at the inner horizon is high. As we 
demonstrated the quantum radiation from the inner horizon of such a 
black hole is high. For large duration parameter q the energy emitted 
from it is proportional to )𝑒𝑥𝑝(2𝑞 and easily exceeds the mass of the 
black hole  M. This property shows that such standard models are 
internally inconsistent. 

Back reaction effects of created particles on the background geometry 
are to be taken into account to restore self-consistency of the model.

Certainly, the standard sandwich model is quite different from a 
“realistic” black hole, where the mass decrease is not abrupt, but is a 
smooth and continuous function of time. However qualitative conclusions, 
concerning role of quantum effects are robust and model independent.




